NASA TECHNICAL NOTE LOAN COPY: RETURN AFWL (WLL—) KIRTLAND AFB, N N # DESIGN, TESTS, AND ANALYSIS OF A HOT STRUCTURE FOR LIFTING REENTRY VEHICLES by Richard A. Pride, Dick M. Royster, and Bobbie F. Helms Langley Research Center Langley Station, Hampton, Va. NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. • APRIL 1964 # DESIGN, TESTS, AND ANALYSIS OF A HOT STRUCTURE FOR LIFTING REENTRY VEHICLES By Richard A. Pride, Dick M. Royster, and Bobbie F. Helms Langley Research Center Langley Station, Hampton, Va. NATIONAL AERONAUTICS AND SPACE ADMINISTRATION For sale by the Office of Technical Services, Department of Commerce, Washington, D.C. 20230 -- Price \$2.75 ŧ # DESIGN, TESTS, AND ANALYSIS OF A HOT STRUCTURE #### FOR LIFTING REENTRY VEHICLES By Richard A. Pride, Dick M. Royster, and Bobbie F. Helms #### SUMMARY A large structural model of a lifting reentry vehicle has been designed and fabricated to incorporate design concepts applicable to a radiation-cooled vehicle. Thermal-stress-alleviating features of the model are discussed. The structure successfully survived all environmental tests, which included approximately 100 cycles of room-temperature loading and 33 cycles of combined loading and heating up to temperatures of $1,600^{\circ}$ F. Measured temperatures are presented for all parts of the model for tests at $1,600^{\circ}$ F. Comparisons made between measured and calculated strains and deflections for the model show satisfactory agreement. Environmental tests on model components include corrugation-stiffened skin panels subjected to various combinations of heat, load, random intense noise, and wind-tunnel flutter and corrugated shear webs subjected to combined heat and load. Tests were generally carried to failure. Results by analytical methods are presented wherever possible, and the correlation with the experimental behavior of the components is satisfactory. Component behavior also shows that the concepts employed in the large model were designed with an adequate margin of strength. # INTRODUCTION Design of lifting reentry vehicles of low wing loading can be based on radiative thermal-protection systems. One such radiative system, the hot structure, subjects the load-carrying material to high temperatures with large variations in temperature throughout the structure. These conditions present difficult thermal-stress problems and have prompted investigation of structural concepts which are designed to cope with the thermal environment while maintaining a load-carrying capability. Preliminary results of such an investigation were reported in reference 1. The present paper further describes the design and fabrication of the full-scale structural model of a lifting reentry glider presented in reference 1 and also presents the detailed structural response of the model to applied loads and heating which simulate the reentry environment. Studies were also made in depth of buckling, shear, and bending deformations and response to acoustic and wind-tunnel flutter tests of two of the more unusual components of the structural model - namely, corrugated-skin panels and shear webs. # SYMBOLS | Α | cross-sectional area, sq in. | |------|---| | a | distance between applied loads, in. | | В, С | empirical correction terms | | ъ | width of element, in. | | С | spar-cap depth, in. | | D | diameter of hole or cutout, in. | | đ | depth of shear web, in. | | E | modulus of elasticity, psi | | G | shear modulus of elasticity, psi | | GJ | effective torsional stiffness, lb-in. ² | | H | distance from neutral axis of beam to centroid of spar cap (fig. 2(c)), in. | | h | distance between centroid and outside cover of spar cap (fig. 2(c)), in. | | I | moment of inertia, in. 4 | | 7 | length of element, in. | | М | bending moment, in-lb | | n | exponent in stress-strain equation (D3) | | P | concentrated load, 1b | | q | shear flow, lb/in. | | S | planform area of reentry vehicle, sq ft | | s | distance around perimeter of cross section, in. | | T | temperature, ^O F | ``` Ŧ average temperature, OF t thickness, in. gross weight of reentry vehicle, 1b W coordinates х, у • coefficient of thermal expansion, in./in./OF angle of support rotation, radians β shear strain γ deflection, in. δ strain empirical postbuckling factor θ angle of twist, radians Poisson's ratio μ radius of curvature, in. ρ stress, psi shear stress, psi Τ angle of slope at end of beam, radians Subscripts: В bottom, with respect to testing configuration of model buckling cr f failure i, j any particular element or part \mathbf{T} top, with respect to testing configuration of model ult ultimate yield У stress σ ``` #### LIFTING REENTRY GLIDER #### STRUCTURAL DESIGN A full-scale structural model of the forward portion of a lifting reentry vehicle was designed, fabricated, and tested. Figure 1 is a photograph of this model during assembly and instrumentation. The model is triangular in planform and cross section with a length of 12 feet, a width at the base of 7 feet, and a height at the base of $2\frac{3}{4}$ feet. These dimensions provide a planform area of 47 square feet with a sweep angle of 75° . In order to provide the greatest variety of test information, this structural model was designed with a nonsymmetrical cross section in order to be more representative of a general class of reentry vehicles. Skin panels and internal structure were designed so that the model could be heated and loaded from either side to simulate either a flat-bottomed or a V-bottomed reentry vehicle. Initial design guidelines specified a glider configuration with W/S = 30 lb/sq ft and a limit load factor of 7 at room temperature. Simulated reentry heat input was specified for only one surface so that a peak heat-shield temperature of $2,500^{\circ}$ F would be reached. Based on observations made in reference 2, a temperature of $2,500^{\circ}$ F on the metallic outer surface of a heat shield containing passive fibrous insulation would correspond to a temperature of about $1,600^{\circ}$ F in the primary skin structure. For these particular tests, heat was applied only to the flat planform surface so as to reach a peak temperature of $1,600^{\circ}$ F. No heat shields, leading edges, or nose cap were used on the model. #### Interior The internal structure of the model consists of an approximately orthogonal arrangement of transverse frames and two main beams (fig. 2). The skin panels are designed so that air loads are transmitted only to the transverse frames. These frames in turn transmit the loads to the two main beams. All load-carrying members operate at elevated temperatures because the heat transfer from the skin panels is principally by radiation throughout the internal structure with conduction a secondary means of heat transfer. The principal thermal forces are alleviated by designing an essentially determinate structure so as not appreciably to restrict thermal displacements. Corrugated shear webs are used in both the transverse frames and the main beams to carry the shear loads, and at the same time, to permit differential thermal expansion between the top and bottom spar caps without a large buildup of thermal stress. Reference 3 shows that shear webs of corrugated material may be designed to be efficient with regard to shear strength and stiffness. Details of the two types of corrugated webs are shown in figure 2(b). The main-beam web is a standard 60° corrugation and is spotwelded between the channels of the main-beam spar cap as shown in figure 2(b). The transverse-frame web has a specially designed corrugation to provide extreme flexibility normal to the web between the two channels which make up the transverse cap. This flexibility is needed to allow the skin-panel expansion joints to expand or contract freely without a large buildup of thermal stress in the skins. The transverse shear webs are spliced to the main-beam webs at their intersection. Spar-cap details are shown in figure 2(c). Primary bending stiffness for the model is provided by the spar caps of the two main beams. Because of the taper in depth of the main beams as well as taper in depth of individual spar caps, the lettered dimensions change with station and are tabulated along with the section properties in table I. Transverse-frame spar caps consist of two channels of constant cross section. In order to help isolate thermally the main beams from the skin panels, the transverse-frame channels cross on the outside of the main-beam spar cap (fig. 1). One channel in each frame is firmly attached to the main beam with a clip angle, but the other channel is freely floating so that the expansion-joint action is not restricted. #### Exterior The exterior of the model is covered with corrugated skin panels with the axis of the corrugations alined as shown in figure 3. These skin panels serve a dual purpose; air loads are carried fore and aft to the supporting internal frames, and torsional stiffness is provided for the model. Expansion joints (see fig. 3(c)) in the transverse frames which extend around the model cross section at 2-foot longitudinal intervals help to alleviate thermal stresses but prevent the skins from contributing any bending stiffness to the model. The station numbers shown in figures 2(a) and 3(b) designate longitudinal locations measured in inches from the apex shown in figure 3(b). The skin panels are attached to the outside flanges of the transverse-frame caps by blind riveting (fig. 3(c)). Skin panels are fabricated by seam welding two pieces of 0.0107-inch-thick sheet. The outer sheet is beaded slightly to stiffen the sheet against local buckling and to preset a pattern which deforms uniformly when thermal expansion across the beads is restrained by the attachment to the transverse frames. The inner sheet is formed to a 60° , 1/2-inch flat corrugation and stops
short of the edge of the outer sheet. A Z-stiffener provides the transition from the inner sheet to the outer sheet along the attached edges as shown in figure 3(c). The skin panels are attached only to the transverse frames and do not come in contact with the main-beam cap. The expansion-joint tie acts as a joint seal and allows the transverse-frame channels to move relative to each other as the skin panels move, so that their shear stiffness can be utilized for torsional stiffness of the model. For aerodynamic smoothness, the expansion joint is covered with a strip which is fastened on the upstream side. #### Material All parts of the structural model were fabricated from Inconel X. This material was selected because, as an established commercial alloy, it was readily available, could be readily formed and spotwelded in the annealed condition, could be heattreated after fabrication, and had the strength capabilities to meet the design requirements. Four thicknesses of sheet were used. The average thicknesses for various parts of the model were 0.0107-inch sheet for skin panels and transverse-frame shear webs, 0.0193-inch sheet for main-beam shear webs, 0.0317-inch sheet for transverse-frame caps, and 0.0502-inch sheet for main-beam caps. The average weight of the internal structure in this model is 1.5 lb/sq ft and the average weight of the skin panels is 1.0 lb/sq ft based on the wetted area of the model. Prior to heat treatment, the skin panels were assembled on the transverse frames. All of the rivet holes needed for final assembly were drilled. Blind rivets were driven in 50 percent of the rivet holes (fig. 3(c)). The assembly was mounted inside a heavy structural-steel frame as shown in figure 3(d) to prevent handling damage during transportation to and from heat treatment. During heat treatment, both the assembled model and frame were placed in the furnace with the model freely suspended from the top of the frame so that no external restraint of thermal expansion occurred. The model was heattreated 2 hours at $1,400^{\circ}$ F in a large gas-fired furnace. Heating and cooling in the furnace were controlled at rates which kept temperature differences throughout the model less than 100° F at any time. Results from references 4 to 6 showed that optimum short-time tensile strength could be obtained by heattreating annealed Inconel X sheet at $1,400^{\circ}$ F for times from 1 to 4 hours. In order to insure that all parts of the large model were at $1,400^{\circ}$ F for at least 1 hour, a 2-hour heattreating exposure was used. Material properties resulting from this heat treatment are given in table II. After heattreating the large model, all rivets were drilled out, skin panels were removed, and the entire structure was examined for cracks. No warping was observed for the assembly or for individual parts. Several small cracks were discovered in a longitudinal riveted joint between skin panels and leading-edge closing web. These were stopped by drilling a small hole at the end of each crack, and a reinforcing strip was riveted over the affected region of the closing web. The frequency of these reinforcements can be seen in figure 4(a) by the presence of extra rivets in the single horizontal rivet connection shown. This joint was designed to be nonload carrying and the presence of cracks and repairs thereto was not considered to have an appreciable effect on the subsequent behavior of the model. After attaching thermocouple and strain-gage instrumentation, the skin panels were reassembled on the transverse frames with rivets driven in all of the rivet holes. #### Instrumentation Response of various parts of the model to loading and heating was measured by 84 strain gages and 300 thermocouples installed inside the model after heat treatment, and by two load cells, four thermocouples, 24 deflectometers, and one transit attached to or reading on various exterior portions of the model. The location of the various transducers is shown in figure 5. Details of transducer installation and data recording as well as a discussion of data accuracy are given in appendix A. #### Test Apparatus Loads were applied to the model cantilevered from a support as shown in figure 4(a). Two hydraulic jacks loaded the model through a whippletree system so as to approximate the bending moments and shears in the transverse frames and main beams that would be produced by a uniformly distributed airload on the flat side of the model. Whippletree loads were applied to loading straps which extended through the model expansion joints and were spotwelded to the shear webs at the intersections of transverse frames with either main beams or leading edges (see fig. 3(a)). The loads applied to the model were transferred to the model support through four pins (pin holes are shown at right end of model in fig. 1). The support structure and the loading jacks were bolted into the reinforced concrete laboratory floor. Elevated-temperature tests were run by radiantly heating the flat side of the model with a large quartz-lamp radiator (fig. 4(b)). For the lamp configuration shown, heating was designed to produce isotherms parallel to the leading edges of the model. The radiator was divided into seven zones, each operated by a separate ignitron tube power supply and controlled by a computer which continuously compared model temperature response with the programed temperature desired as plotted on a time-based curve. Three-phase electrical power was distributed to the lamp units through a system of bare copper tubing mounted behind the lamp units and supported on high-temperature ceramic electrical insulation. This arrangement eliminated the possibility of fire in overheated electrical insulation. Maximum power capacity for the radiator was 2,800 kilowatts. Cooling the quartz lamps for long-time high-temperature use was accomplished by blowing air across the lamp ends and the quartz envelopes. Cooling air at a pressure of 30 psi and a volume flow of 1,300 standard cubic feet/minute was distributed in the high-temperature areas through gold-plated stainless-steel tubing. The radiator is shown raised for checkout in figure 4(b). Before a test, the radiator was lowered so that it was parallel to, and about 4 inches above, the flat surface of the model. #### MODEL TEST RESULTS AND DISCUSSION Structural behavior of the model was studied first at room temperature for three types of load application and second at various combinations of loading and elevated temperatures simulating reentry environments. All tests on the model simulated heating and loading conditions for a flat-bottom reentry configuration. For testing convenience the model was mounted with the flat side up (fig. 4). All references to top or bottom in this report refer to the test orientation of the model; thus the top skin refers to the flat side. An overall observation of the model behavior is that the model responded elastically throughout the cyclic loading and heating history. This elastic response was indicated by absence of permanent set in the measured strains upon removal of load and by the cumulative total measured permanent deflection at the tip of only 0.06 inch (less than 3 percent of maximum cyclic deflection). #### Room-Temperature Loading The strain and deflection response to room-temperature loading is given in tables III to VII. For each location of the application of load on the model (tables III to VI) one preload and two load cycles were applied up to the loads indicated in the tables in order to record all readings from the instrumentation. Loads were increased or decreased continuously at a rate of about 1,000 pounds per minute. For the concentrated-load bending tests, a single jack loaded particular stations on the model. The jack load was divided so as to be applied symmetrically to the two main beams or the two leading-edge load points at the selected station. Thus the 1,000-pound load applied at any station in table III or V is divided to place 500 pounds on each of the two main beams or on each of the two leading edges. Room-temperature deflections. Deflections measured at the various stations for concentrated loads symmetrically applied to the model at room temperature are listed in table III. The tabulated values are averages of slopes for straight lines fitted to the experimental deflection-load data for the two symmetrical locations (main beam or leading edge). Interference between the loading apparatus and the deflectometer connections resulted in a loss of deflection measurements for a few combinations as noted by the blank spots in table III. Experimental deflections of the model at various stations for distributed loads are given in table IV and are plotted in figure 6(a). The three loads represent approximately one-third, two-thirds, and the maximum applied load. The whippletrees (fig. 4(a)) were designed to distribute the hydraulic jack load so as to simulate a uniform airload, and several checks indicated that individual load points were receiving applied loads within 4 percent of their calculated value. A comparison is shown in figure 6(a) between the measured deflections and calculated deflections on the main beams for the same values of applied distributed load. Agreement is reasonable at the tip of the model (7 percent), but is less satisfactory at stations towards the root. Calculated deflections consist of three parts, bending deflections, shear deflections, and deflections due to support motion. A comparison is shown in figure 6(b) of the influence of these three factors considered in the calculated deflections. Although bending is predominant, support deformation and shear both contribute significantly to the total beam deflection. The two main beams are assumed to carry all of the applied loads inasmuch as the expansion joints between skin panels were designed to be flexible under direct loads. Details of the theoretical analysis are
presented in appendix B. Room-temperature shear strains.- Experimental strains in various parts of the model responded to applied loads at room temperature in a generally predictable manner. Strains increased linearly with increase of applied load. Some of the special characteristics designed into the model resulted in a few unusual responses. The shear strain in the corrugated webs of the main beams is plotted in figure 7(a) for 1,000-pound concentrated-load applications at various stations and shows the influence of the depthwise taper in the main beam as well as the effect of access hole cutouts in the web. Shear strain was measured with back-to-back rosette gages attached to the corrugated web at station 188 (fig. 5(b)). Rosettes at two other stations developed electrical grounds and were not read. The measured shear strain at station 188 decreased as the point of load application moved toward the tip of the model. As the applied load moved toward the tip, the bending moment at station 188 increased and accordingly the vertical component of the compressive thrust in the inclined spar cap also increased. Increase in the spar cap vertical component produced a decrease in the shear force remaining to be carried by the web. The curve labeled "Uniform strain distribution" in figure 7(a) is calculated by dividing the shear force by the web cross-sectional area and the shear modulus. The shear strain is assumed to be uniformly distributed across the depth of the web. This is shown experimentally to be a valid assumption for solid corrugated shear web beams in a subsequent section entitled "Component Tests." However, reference to figures 2(a) and 5(b) shows that the rosette gage at station 188 is close to a circular cutout in the web. The cutout proximity causes an increased strain at the gage location. Strain distributions around cutouts in corrugated shear webs described in the section "Component Tests" indicate that a strain concentration factor of 1.8 should be applied to the uniform shear strains calculated for station 188. The curve labeled "Strain concentration factor, 1.8" in figure 7(a) is calculated by increasing the uniform calculated shear strain 1.8 times. This operation gives reasonable agreement with the experimental strain. Room-temperature axial strains. Axial strains due to bending in the spar caps of the main beams are shown in figure 7(b) for concentrated load applications at various stations. Axial strains shown were measured with gages at various locations in the cross section at station 155. The strains in figure 7(b) are plotted as the parameter strain-moment ratio ϵ/M in order to compare directly values for the concentrated load at various stations. Particular values of strain can be read directly from table V. The two curves shown are the calculated y/EI values for the top and bottom spar caps at station 155 obtained on the basis of the measured dimensions (fig. 2 and table I). Measured strains from corresponding gages on both left and right main beams are presented. The agreement shown between measured and calculated strains is satisfactory for cases where the concentrated load was applied at considerable distance from the gage cross section, for example, load at station 47 or 72. However, as the point of load application moves closer to the strain gages, individual gage readings deviate quite markedly from the calculated values. Averages of left and right beam readings reduce the deviation considerably but do not eliminate it. The manner in which the concentrated load is distributed from the loading strap into the corrugated shear web and from the web into the spar caps apparently produces local disturbances in the cross-sectional strain-distribution pattern which extend for some length along the beam from the point of load application. Average values of axial strain in the top and bottom spar caps is shown in figure 7(c) as a function of location along the length of the beams for the maximum value of distributed load applied (9,986 lb). Averages are for both left and right main beams and the numbers indicate the number of strain-gage readings which were averaged for a particular point. The curves are the calculated MH/EI values of average strain for the same value of distributed load (9,986 lb). The agreement between measured and calculated average axial strain is satisfactory with the exception of one point on the top spar cap at station 192. However, this is a single gage reading at one particular point in the cross section and as shown in the previous figure 7(b), individual gage readings may deviate considerably. The strains shown in figure 7 are for typical responses of the main beams to applied bending loads. Since the model was designed so that the skin panels would transfer only local air loads and would provide torsional stiffness, the response of the skin panels to the overall bending is of interest. As shown in table V, the only strains measured by any of the gages on the skin panels at station 158 occurred when the concentrated load was applied at the leading edges of station 144. These strains are probably the result of local distortions of the skin panels due to bending of the transverse frame at station 144 to which they are attached. Room-temperature angular twist. In addition to the room-temperature bending tests, a torsion test was made to determine the ability of the model with its special design features to withstand torque loadings. A torque was applied at station 96 up to a maximum value of 16,650 in-lb by deadweight loading the two leading-edge load points antisymmetrically. The reaction to the torque was taken out through the main beams into the model support at station 205 in the same manner as reactions to bending loads were carried. Vertical deflections of the model at various stations were measured and are listed in table VII along with the experimental angles of twist determined from these deflections. A comparison of measured angle of twist with calculated values obtained from two elementary methods is shown in figure 8. In the first method, the torsion is assumed to be carried in the shell of a torque box. Details of this method are discussed in appendix B. The second method for calculating angle of twist in the model assumes that all of the applied torque is carried by the two main beams by differential bending, one beam deflecting up and the other beam deflecting down. Bending deflections have been discussed in an earlier section. The total angle of twist at any station then becomes the bending deflection of one main beam divided by the distance from the model center line to the beam. Experimentally, the model twisted about 5 times more than would be calculated when the skins were assumed to form a torque box, and about 10 times less than calculated when the two main beams were assumed to carry the torque by differential bending. #### Elevated Temperatures and Loads Programing The elevated temperature tests were run by programing both load and temperature on the model simultaneously. Figure 9 shows a typical programed test environment for a time of 20 minutes. Since the model was a research specimen, no attempt was made to duplicate the effects of any specific reentry trajectory. Ramp function inputs were used to simplify the analysis of results. The temperature along the structural leading edge of the flat top heated surface was increased at a rate of 10° F per second up to a maximum of 1,600° F, then held constant for about 15 minutes, and finally decreased at a programed rate of 10° F per second. The temperature at the center line of station 182 (near the back) on the heated surface was programed to increase at a rate of 8.6° F per second so as to arrive at a maximum of 1,385° F at the same time as the leading edge reached 1,600° F. Temperatures at other locations on the heated surface were programed similarly to arrive at maximum temperatures between 1,385° F and 1,600° F. About midway in the program, a load pulse of 6,700 pounds was applied hydraulically. (See fig. 9.) The experimental response of the model to the programed heating and loading of figure 9 is given in table VIII. Temperatures measured at many locations in the model are listed in table VIII for various times from the start of heating for the $1,600^{\circ}$ F combined heating and loading test. In general all the thermocouples measuring temperatures in a particular part of the model are grouped together in the table and can be located by reference to the table headings and the instrumentation drawings (fig. 5). The four parts of table VIII correspond to the four heating cycles required to record all the instrumentation. The first heating cycle (table VIII(a)) was used primarily to record strains and associated temperatures in order to minimize temperature cycling effects on the strain gages. The load pulse applied during this cycle was 889 pounds. Examination of the sparcap temperatures indicated that considerably more load could be safely carried, and accordingly, a load pulse of 6,472 pounds was applied on the second, third, and fourth cycles. Cyclic repeatability of data is discussed in appendix A. The temperatures in table VIII are considered to be representative for either load pulse, since neither deformations produced by heating nor any particular change in temperature that could be attributed to loading were observed when the load was applied or removed. However, the strains must be associated only with the smaller load pulse (table VIII(a)), and the deflections must be associated with the larger load pulse (table VIII(b)). #### Temperature Distribution Temperatures not only vary widely at various stations on the model at any particular time but also vary with time. Figure 10 presents temperature distributions in various parts of the model at a fixed time of 7 minutes from the start of heating. Seven minutes was selected as it was near the time of maximum model
deflection due to heating. Top skin .- Temperatures in the top skin 4 inches beneath the radiator are shown in figure 10(a). The temperature controllers brought this surface up to approximately these temperatures in 2.5 minutes and then held it constant. programed pattern of isotherms parallel to the leading edges is evident with highest temperatures along the leading edges and lower temperatures in the interior. However, many deviations from the programed pattern are also evident and indicate the influence of factors which could not be controlled. Dead spots exist in the mechanical arrangement of the quartz heat lamps (fig. 4(b)) which though minimized in the radiator design, produced local cold spots in the heated surface. As the model interior heated up, the model deflected away from the radiator so that the distance between lamps and heated surface was increased. The radiator was designed to minimize the effect of model deflection by controlling the portion over the model from station 48 to station 96 separately from the remainder of the radiator. Control thermocouples in the cross sections at sections 84 and 182 maintained the programed temperature within ±10° F throughout the cycle. peratures in other cross sections were generally lower than the control temperature because of the increased distance from the radiator. Conduction into the heat sinks formed by the transverse frames produced temperature variations in the skin panel length between frames as shown by the three longitudinal groups of thermocouples in figure 10(a). With the exception of the rear panel (stations 168 to 192) the left side of the top skin was hotter throughout the entire test than the right side. An overall difference in temperature of about 1000 F can be seen between symmetrically located thermocouples on the left and right sides for which no explanation has been found. The maximum difference in measured temperatures in the entire top skin after 7 minutes of heating was 515° F while the programed difference was 2150 F. Bottom skin.- Temperatures in the bottom skin after 7 minutes of heating are shown in figure 10(b). The bottom skin is heated primarily by radiation through the model interior from the top skin, and loses heat to the outside by radiation to the test enclosure and by natural convection of air past the inclined lower surfaces. A pattern of isotherms parallel to the leading edges is also evident in the bottom skin. However, the isotherms are more a function of distance from the top skin than of the isotherm pattern in the top skin. The maximum difference in measured temperatures in the bottom skin after 7 minutes is 644° F. comparison of temperature variation in the top and bottom skins at station 157 after 7 minutes of heating is shown in figure 10(c). The magnitude of temperature at any point is proportional to the perpendicular distance from the temperature curve to the model cross section. The general trend of the programed temperature variation in the top skin is evident, as is the effect of the left side being hotter than the right. Local temperature variations due to radiator dead spots and model heat sinks show up as minor effects in this particular cross section. Transverse frame. - A similar comparison of temperature variation in an adjacent transverse frame at station 144 is shown in figure 10(d). The temperatures shown around the outside of the frame were measured at the midpoint of the transverse frame caps (fig. 5(d)). Temperatures in the top cap are several hundred degrees lower than the corresponding skin temperatures (fig. 10(c)), and the variations across the width of the model are reduced. Heating of the top spar cap was primarily by conduction. The bottom-spar-cap temperatures are very similar to the corresponding bottom-skin temperatures since both are heated primarily by radiation through the model interior, and the 7 minutes of heating time is sufficient to establish approximate equilibrium. The transverse-spar-cap temperature on top dips in the vicinity of the junction with the main beams as a result of conduction into the colder main beam. Transverse-cap temperature also dips on the bottom in the vicinity of the main beams because the main-beam spar cap shields the transverse cap from radiation. Transverse-frame shear-web temperatures along two corrugation elements at station 144 (fig. 10(d)) indicate heating by radiation from the top skin. Shear webs have smaller heat losses than the bottom skin because as an interior member the web reradiates only to other parts of the model, all of which are heated considerably above room temperature. Main beams. Temperature distribution along the main-beam spar caps is shown in figure 10(e) for the right beam after 7 minutes of heating. Heating of both top and bottom spar caps is by radiation since the main beams lie beneath the top skin, and the only points of contact are through the transverse caps at the junctions with the transverse frames. The shielding effect of the transverse frames is quite evident from the temperature dips in figure 10(e). Obtaining average temperatures for each 24-inch length between transverse frames requires a certain amount of engineering judgment or a considerable increase in the number of thermocouples used. The temperature distribution shown represents the largest difference in temperature between the top and bottom spar caps; however, because of the mass involved the actual temperatures of both continued to increase throughout the duration of the heating cycle. Temperature variation with time. Variation of temperature with time is shown in figure 11 for four selected points in the top and bottom skins and top and bottom spar caps of the right main beam at station 157. The top skin shows a response very similar to the programed input (fig. 9) with the exception of the region near the end of the test when natural cooling took place at a slower rate than the maximum programed cooling rate. As noted previously, heating of the main-beam spar caps and bottom skin occurred primarily by radiation from the top skin and the temperature responses are functions of the distances from the top skin and relative masses. From 5 to 10 minutes elapsed after the top skin reached equilibrium before the other elements essentially reached equilibrium. # Model Response to Temperature and Load Vertical deflection. Since the spar caps of the main beams provide the longitudinal bending stiffness for the model, spar-cap-temperature response to heating results in beam curvature and deflection. Vertical tip deflection of the model is shown in figure 12(a) for the 1,600° F combined heating and loading test. The experimental model deflection is compared with the calculated deflection (see appendix B) for most of the heating and loading cycle. The model deflection reaches a value of nearly 3 inches due to spar-cap-temperature difference at an exposure time of about 7 minutes corresponding to the maximum temperature difference between top and bottom spar caps. Beyond an exposure time of 7 minutes, deflection due to temperature difference decreases even though the absolute spar temperatures were still increasing. The hump in the deflection curve is produced by the load pulse applied during the heating cycle. Note that deflection due to heating is about 3 times the deflection due to loading. The rapid decrease in deflection at 1,050 seconds corresponds to the time when peak heat input ceased and the model began to cool rapidly. Horizontal deflections. The effect of the left side of the model being heated more than the right side (as mentioned previously) also shows up in the left and right main-beam temperatures. (See tables VIII(c) and (d).) The left beam, being hotter, expands more in every element of length than the right beam, and this expansion produces a horizontal bending of the model. The measured horizontal tip deflection resulting from this "left-side-hotter" condition is shown in figure 12(b). The deflection can be seen to be simply a function of heating and is independent of the applied vertical load pulse. These measurements were taken optically with a transit and were not read beyond the start of cooling in the heat cycle. A reading taken much later after the model had returned to room temperature indicated, however, that the deflection was completely elastic and no residual horizontal deflection remained. Spar-cap strains. Variation of temperature in the cross section of the main-beam spar caps is shown in figure 13 for the top right spar cap at several times during the heating cycle. The solid curves are drawn through measured temperatures for the 1,600° F test (table VIII); the dashed curves are drawn through temperatures obtained during the 1,000° F test (table IX). The large differences in temperature around the cross section during the early part of the heating cycle indicate that the shape and distance of various parts of the spar cap from the radiating top skin are significant in determining temperature. Even after considerable time has elapsed, differences of more than 100° F exist. A somewhat similar pattern of temperature variation occurred in the bottom spar cap. Temperature variations in the spar caps such as shown in figure 13 produce local thermal stresses and strains and have a secondary effect on beam bending deflections, since the average temperature of the spar cap will be influenced by the temperature distribution. Strains due to combined thermal and load stress are presented in figure 14 for both top and bottom main-beam spar caps at two times during the 1,000° F test tabulated in table IX. The two times presented represent: (1) a case of thermal strain with essentially no load and (2) a case of combined thermal and applied load strain. Calculated strains are based on an analysis which divides the spar caps into 12 parts, assumes a linear variation of total strain with distance from the neutral axis (plane cross sections
remain plane), and sums the forces and moments for the 12 parts of the cross section so as to equate them to the applied forces and moments. Variation of temperatures in the 12 parts requires 12 sets of material properties. The resulting equations were solved with high-speed digital computing machines and the curves in figure 14 were drawn through the results. The differences shown in figure 14 between load and no-load calculated curves represent primarily strains due to load, but also have some additional strain due to a change in the temperature distribution between times 317 seconds and 665 seconds. The measured strains show good agreement with the calculated thermal strains for the no-load case but show some of the same lack of agreement at individual points for combined load and thermal strain that was previously indicated for room-temperature loading (fig. 7(b)). However, the average level of measured strain is in good agreement with the calculated strain. Prior to the four cycles at $1,600^{\circ}$ F listed in table VIII, the model had been subjected to about 100 cycles of distributed loading at room temperature in the manner given by tables IV and VI, and 28 cycles of combined heating and loading in the manner given by figure 9 at various levels of peak temperature between 400° F and $1,600^{\circ}$ F. # COMPONENT DESIGN AND TEST As a means of developing a better understanding of the structural deformations and strength of the specific corrugated shear-web and skin-panel designs used in the structural concept model and of developing design modifications, 15 shear-web beams and 15 skin-panel specimens were designed, fabricated, and tested under a variety of conditions. #### CORRUGATED SHEAR WEBS # Specimens Two series of corrugated shear-web beams were designed, built, and tested. Tests were conducted on the beams under combinations of heat and load. The basic specimen concept is the same as described in reference 3. Details of the specimens are shown in figure 15. The shear-web specimens incorporating the same web design as the reentry glider model main beams (60°) by 1-inch flat corrugation) are detailed in figure 15(a). Similar shear-web beams utilizing the special corrugation of the reentry-glider-model transverse frames are detailed in figure 15(b). All beams tested are listed in table X. All specimens were made of Inconel X heat treated 2 hours at $1,400^{\circ}$ F in the same way as the reentry glider model. Most of the beams were fabricated by spotwelding the corrugated shear web to sparcap angles in a manner duplicating the connections in the reentry-glider model. For the purpose of studying means of improving shear-web strength without destroying the thermal expansion capabilities, several other beams were fabricated with a doubler strip along the edges of the corrugation. Also, several of the beams had circular cutouts in the center of the web to study their influence on beam behavior. ## Test Setups The test setup is illustrated in figure 16. Room-temperature testing is shown in figure 16(a) and the construction of a quartz lamp radiator for controlling the elevated temperature tests is shown in figure 16(b). One bank of lamps has not been installed, so the location of the specimen relative to the radiator elements can be seen. In both of these setups a vertical load is applied to the tip of the shear-web beam with a hydraulic jack. The beam is cantilevered from a rigid backstop. Tip deflections of the beam are measured with a flexible cantilever-type deflectometer mounted above the beam (fig. 16(a)). The heavy flanges and end plates shown bolted to the spar-cap angles form a frame which distributes the concentrated load uniformly to the shear web and carries all of the bending moment. Thus, the corrugated web is essentially loaded in pure shear. # Tests, Results and Discussion Room-temperature load tests were made to evaluate the performance of the spot-welded connections between corrugations and spar caps and to provide a reference from which to judge the effects of other parameters. Elevated-temperature tests were made to study the behavior of corrugations at temperature and under load. The two temperature profiles programed (fig. 17) were selected to cover the range of shear-web temperatures experienced in the reentry glider model. Experimentally good correlation is shown with the programed temperatures, and the 1,200° to 900° F temperature gradient is reasonably close to the temperature pattern at station 160 for the reentry model at a time midway through the loading cycle in the 1,600° F test (table VIII(a) and fig. 5(c)). Shear deflection.- Variation of tip shear deflection for beams utilizing the two types of corrugated web is shown in figure 18. The largest effects are due to the change in corrugation design from the 60° by 1-inch flat corrugation (fig. 18(a)) to the model transverse-frame corrugation (fig. 18(b)). This change in design results in 2° times more deflection for the same load on the transverse-frame corrugation than on the 60° corrugation. The addition of the doubler strip along the connected edges of the web has little effect on the beam stiffness for the 60° corrugation but doubles the initial stiffness of the transverse-frame corrugation. The presence of cutouts reduces the stiffness of the 60° corrugation considerably but has little effect on the already flexible transverse-frame corrugation. These effects can be seen experimentally in figure 18 but might be difficult to calculate quantitatively. Deflections for the basic corrugations can be calculated with reasonable accuracy by use of the developed length of either corrugation along with considerations of the additional flexibility of the special transverse-frame corrugation. (See appendix C.) Failure strength. The influence of temperature and doubler strips on the strength of corrugated shear webs is shown in figure 19. Shear-web strength is degraded by temperature. Addition of doublers along the connected edges of the shear webs generally increased the strength. Buckling and failure strength calculations are made in appendix C. Several different modes of failure were experienced by the shear-web beams as listed in table X. Spot-welded connections between web corrugations and sparcap angles failed in shear along both the top and bottom edges of specimens 1, 2, and 10. Specimens 3, 8, and 11 had similar spot-weld failures along the hottest edge only. Local shear buckling of the flat elements of the 60° corrugation followed by maximum load occurred for the two specimens with doublers along the connections (specimens 4 and 5). Figure 20(a) is a photograph of this type of fail-The 60° corrugation beams with cutouts had extensive distortion around the cutout leading to a general buckling type failure for specimens 6 and 7. A special type of general instability was experienced by most of the transverse-frame corrugation beams. An example of this type is shown in figure 20(b) and the failure can best be described as a twisting and falling over of the corrugations with the sharp crease horizontally along the center line occurring at failure or just after failure. Two tests of the transverse-frame corrugation at 1,200° F failed by web-cap connection failure but also displayed evidence of overall instability. The low stress level at failure and the general instability mode are both indicative that the large proportion of the edge of the web which is unsupported is a major factor in the failure. Adding a doubler strip along this edge increases the initial beam stiffness but does not change the mode of failure or produce a significant increase in strength. The presence of cutouts in a shear web is a practical necessity for access in most structures. In corrugated shear webs, these tests show a decided reduction in strength even when the cutout is reinforced with a stiffener around the edge of the hole (table X). Shear strain.— The extensive distortion and the low failure loads for the 60° corrugation beams with cutouts indicated excessive strains around the cutout. Measurements were made at a number of locations on the web for an elastic load using Tuckerman optical strain gages alined at 45° and 135° with respect to the corrugation vertical center line. These shear strains are shown in figure 21 as measured on specimen 6. A similar distribution was found for specimen 7 which had a stiffener around the cutout. The strain distribution becomes very erratic, even at some distance from the cutout as shown in figure 21. The general level of strain appears to be higher than in the beam without a cutout as shown by the three numbers in parentheses across the center, which are test values from specimen 1. Calculated average shear strain for specimen 1 is in good agreement with these experimental values. Strength-unit weight.- A comparison of strength weight ratios for the various design modifications in the shear webs is given in figure 22. As would be expected, the extreme flexibility designed into the transverse-frame corrugation makes it less efficient for carrying shear than the 60° corrugation. Unstiffened cutouts are very detrimental to strength for both types of corrugation. Adding a stiffener to the corrugation does not fully restore the loss of strength weight. Use of a doubler strip to improve spot-weld connections is quite beneficial to the 60° corrugations. However, the doubler size should be optimized for greatest efficiency. On the transverse-frame corrugation, the increase in strength is offset by the added weight when the doubler is used. #### SKIN PANELS #### Normal Air-Load and Heat Tests Specimens.- Nine corrugation-stiffened skin panel specimens typical of the skin panels used in the structural concept model of a lifting reentry glider (fig. 3) have been subjected to a variety of load and heat tests that generally were
carried to destruction. Two views of the basic test specimens are shown in figure 23. The dimensions and method of construction are the same as given in figure 3(c) for the reentry model with the exception that most of these specimens are 24.5 inches square. All were fabricated from Inconel X and heat treated 2 hours at 1,400° F in the same manner as the model. Expansion-joint and transverse-frame details are the same for the skin panels as for the reentry model, except that the frame is rectangular and designed to support the skin panel in the test fixture for loading. Test setups .- Normal-pressure loads are uniformly applied over the surface of the skin panels by use of the test setup shown in figure 24(a). The test panel is shown fitted into a square hole cut in the top of the cylindrical box. The ends of the panel (left front and right rear in fig. 24(a)) overlapped the top of the box. The sides of the panel (right front and left rear in fig. 24(a)) fit closely against spring-loaded side members so that they were free to deflect up or down with the center of the panel and yet would maintain a tight seal for the reduced air pressure. The box was connected to an air ejector which could maintain reduced pressures in the box while handling large volumes of air due to leaks. Uniformly distributed load on the panel resulted from the pressure difference between atmospheric pressure on the outside and reduced pressure on the inside of the box. Panel deflections were measured with deflectometers installed on the outside and well above the panel so as not to interfere with heating. Deflection transfer rods connected the deflectometers to the panel surface. transfer-rod ends were made from alumina rod so as to receive a minimum of influence from heating in the vicinity of the radiator. The radiator is shown in figure 24(b) installed over the panel surface. It consists of quartz-lamp heater units similar to those used on the large model (fig. 4(b)) and on the shear-web component tests (fig. 16(b)). Side reflectors are utilized to cut down edge losses from the radiator. The deflectometer support frame shown in figure 24(a) fits around and above the radiator. The transfer rods extend through small holes in the back side of the radiator reflector units. All thermocouple and strain-gage-instrumentation leads on the bottom of the skin panels are brought out through a vacuum seal in the side wall of the box. Location of the various types of instrumentation is shown in figure 25. Not all of the instrumentation shown was used in every test, but reference to the appropriate instrumentation is made for each test in table XI. Discussion of test-data acquisition in appendix A for the large reentry model is generally applicable to the skin-panel tests as well. #### Normal Air Load and Heat Results and Discussion Temperature distribution. Two types of heating are considered (fig. 26(a)). In the first, the entire surface of the panel is heated uniformly either to a constant temperature level or at a constant temperature rise rate. In the second, the surface of the panel is heated uniformly along lines parallel to the corrugations, but along lines perpendicular to the corrugations the heating is controlled so as to produce a constant temperature gradient of 300° F between the edges of the panel and the center line. As shown in figure 26(a), the panel edges are at 1,300° F and the center line is at 1,600° F. This gradient is larger than any programed on the large model skin panels (fig. 10(a)) but was selected in order to magnify any effects which might have resulted from the model program. The same gradient was applied to another test specimen but at a lower temperature level (600° F to 300° F) in order to separate effects of material degradation from effects of thermal gradient. Both the uniform and gradient types of heating shown in figure 26(a) result in a temperature difference of about 200° F between the heated surface and the bottoms of the corrugations, which produces a more severe gradient in the corrugation element than exists in the panel planform. In order better to study this gradient, additional thermocouples were installed in the cross section of one corrugation element as shown in figure 26(b), and the temperature distribution was obtained corresponding to the uniform heating at $1,600^{\circ}$ F after equilibrium had been reached. Temperatures in the single-thickness beaded portion of the skin are considerably higher than the temperatures in the double-thickness seamwelded flat portion where all control thermocouples were located both in the skin-panel test specimens and in the large model. The temperature distribution around each corrugation element shown in figure 26(b) was for steady-state equilibrium temperatures. Corresponding temperatures were obtained during the transient phase of heating the panel up to the peak temperatures. Figure 26(c) shows how the temperatures respond through the panel element as a function of time from the start of heating for a programed temperature-rise rate of 10° per second up to a peak of $1,540^{\circ}$ F. The difference in temperature between the hottest and coldest parts reaches a maximum at a heating time of about 60 seconds and remains essentially constant from that time on, even though the temperature level increases considerably. Thermal stresses in the panel element can be related to this temperature difference. The influence of heating rate on this temperature difference between the hottest and coldest parts of the panel element is shown in figure 26(d) for temperature-rise rates from 10^{O} per second to 70^{O} per second. A curve has been faired through the maximum temperature difference points for each rise-rate curve. This gives the point at which maximum thermal stress will exist in various parts of the panel element. Buckling .- If the compressive thermal stress in the panel elements becomes large enough, local buckling of the compressed parts will occur. This occurrence of buckling was observed experimentally in the beaded part of the skin and is detailed in table XI(f) for two skin panels which were heated at various increasing temperature-rise rates up to a maximum temperature of 1,200° F. After each cycle of heating the number of buckles occurring in the skin panel due to the temperature-rise rates was counted. The mode of local buckling was a series of sharp creases with convex curvature forming across the concave curvature of the beaded part in a manner typical of curved plate buckling. The buckles snapped in suddenly and audibly during heating and remained as permanent buckles after the panel cooled. A few buckles were present in the panel from fabrica-Initial imperfections and deviations in temperature distribution in the panel caused additional buckles to occur at nearly all temperature-rise rates. A plot of the number of buckles as a function of temperature-rise rate gives a curve which breaks sharply at a rise rate associated with thermal buckling of the panel. This break occurred at a temperature-rise rate of 36.50 per second for specimen 6 and 20.5° per second for specimen 7. Based on the data from specimen 5 (fig. 26(d)) these critical temperature-rise rates correspond to maximum temperature differences in the panel elements of 805° F and 630° F for specimens 6 and 7, respectively. The normal load of 288 lb/sq ft carried by specimen 7 corresponds to bending stress My/I of 20,400 psi in the beaded part. No evidence of buckling was observed in the room-temperature loading test on specimen 1. Examination of the strain-gage data in table XI(a) indicates that under room-temperature loading, the tension side of the corrugations becomes highly plastic in bending, whereas the compressive strain in the beaded part increases very slowly with increasing load. The maximum compressive stress reached in the beaded part at room temperature is slightly less than 50,000 psi. In order to establish an end-point value for compressive buckling stress of the beaded part of the skin panels, two test specimens were fabricated for compression testing (table XI(h)). Each specimen consisted of a single element of the corrugated skin panel; however, the 60° by 1/2-inch flat corrugated sheet was made from 0.0193-inch-thick sheet in place of 0.0107-inch sheet used in the other panels. This increase in thickness was to preclude compressive buckling of the flat parts prior to that of the beaded part. Experimental buckling stresses for the beaded part of these two specimens averaged 63,800 psi. An interaction curve drawn through the experimental buckling results is shown in figure 27. Combinations of compression load stress and maximum temperature differences which produce buckling can be determined from the curve. Theoretical calculations for the compressive buckling stress of the beaded element were also made utilizing information in reference 7, and several assumptions. The beaded part was assumed to be a long, simply supported curved plate of constant radius. Based on averages of measurements made on several panels, the radius-thickness ratio for the bead was 220. Applying the empirical coefficients to the curved-plate buckling equation, as worked out in reference 7, gave a calculated compressive buckling stress of 71,100 psi, which is in reasonable agreement with the experimental value. Bending deflections. Normal air loads applied over the surface of the skin panels produced bending strains and deflections which became quite large prior to failure. Figure 28(a) presents the experimental load-deflection curves for the various skin panels tested under combinations of load and temperature as detailed in tables XI(a) to (d) and (g). Initial straight-line portions indicate loading ranges which are elastic, and the curved portions indicate the effects of plasticity prior to failure. The panels used in two room-temperature tests did not fail by any detectable
method. The center deflection became so large that it was impossible for the vacuum box to maintain a tight seal along the edges and the leakage exceeded the capability of the ejector system. The curve marked "Room temperature - previously buckled" is for specimen 7 which was loaded to failure at room temperature after having been cycled to 1,200° F eight times at various temperature-rise rates. The panel surface was uniformly covered with permanent buckles in the beaded portions, and a slight residual set in deflection was present at the start of loading. However, with all the apparent visible damage, the panel responded to load in a manner similar to the undamaged specimen. The three curves in figure 28(a) at various elevated temperatures were obtained by applying the steady-state temperature conditions first and then loading to failure. Two of the panels failed by sudden collapse as the load was being increased, and the panel tested at a uniform temperature of 1,600° F experienced a peak load, then continued to deflect as attempts were made unsuccessfully to increase the load, and finally collapsed as the other panels. The initial negative deflection shown in figure 28(a) for these three specimens results from the panel response to the thermal gradient through the cross section of each element. Very little effect of the planform gradient is evident in the initial thermal deflection; however, as the load is increased, the better material properties in the lower temperature parts of the panel show a tendency to stiffen the entire panel with a resultant increase in failure load over the uniform temperature case. Comparison of calculated load-deflection curves with the experimental room temperature and the uniform temperature of 1,600° F is shown in figure 28(b). Details of the calculations are given in appendix D. The agreement shown at room temperature is reasonable, especially in the plastic portion where small uncertainties in stress-strain curves at large plastic strains can produce large effects. For the test at 1,600° F the calculations give good agreement with the initial thermal deflection which is elastic and thus requires only a knowledge of elastic modulus. Under load, however, the uncertainty in material yield and plastic stresses shows up in deviation between calculated and experimental deflections. #### Acoustic Tests Specimens. Four skin-panel specimens were subjected to an intense random noise environment. Each test specimen was approximately 12 inches wide by 48 inches long and consisted of two 12-inch-wide skin panels with an expansion joint between them. This assembly was supported on a heavy framework around all four sides with the regular transverse frame and shear web supporting the two panels at the expansion joint. The first two specimens were fabricated in the same manner as the large reentry model, which included indirect resistance welding of one flange of the Z-stiffener to the crests of the corrugated inner skin (fig. 3(c)). Based on observation of the start of acoustic failure in these two specimens as detailed in table XII, and discussed later, a modification was made in the fabrication of the last two acoustic test specimens. The indirect resistance welding was replaced with a blind rivet between the flange of the Z-stiffener and each corrugation crest of the panel. Test setup. The acoustic tests (table XII) were performed in the random noise environment of a 12-inch-diameter air jet at the Langley Research Center. This facility consists of a circular pipe having four sharp 90° bends upstream of the jet exit and the noise spectra adjacent to the exhaust jet are similar to spectra produced by jet or rocket engines. A more complete description is given in reference 8. Figure 29 shows a photograph of a skin-panel specimen mounted at the jet exit. For all tests the back side of the specimen support box was closed off from the noise environment by a backup plate. As shown in figure 29, the specimen is alined with the long axis parallel to the air flow. The skin-panel corrugations are also parallel to the air flow. Tests were made with the panel in this position and with the specimen and corrugation axis perpendicular to the air flow. Changes in specimen orientation were made to insure adequate coverage by the noise field. In both positions the specimens were mounted a few inches below the boundary of the jet exhaust in a region of essentially constant sound pressure. For testing at elevated temperature, the specimen was mounted well below the boundary of the jet exhaust, and a radiator of quartz-lamp heaters was placed between the specimen and the jet. The sound-pressure level was reduced on the specimen, primarily because of the greater distance between specimen and jet-exhaust boundary. All acoustic tests were made by exposing the specimen to the desired sound-pressure level for an interval of time, then stopping the noise and examining the specimen in detail for evidence of failure or cracking. After each examination, the exposure to noise would be continued for another interval of time, and the process would be repeated until significant failures had been observed. Tests and discussion. The acoustic test results as given in table XII show several interesting qualitative effects. Specimens 10 and 11 developed skin cracks initially at about the same time after 40 minutes of exposure to a sound-pressure level of 160 db. No effect was evident from testing orientation. The extent of skin cracking is shown at the end of the test (121 min) for specimen 10 in figure 30. Close examination of specimen 10 after the 121 minutes revealed that many of the indirect resistance welds between the flange of the Z-stiffener and the bottoms of the skin corrugations had been broken as shown in figure 31. Since these welds were an area of potential weakness, they were observed more closely during the test of specimen ll. The indirect resistance welds were noted to be failing considerably earlier than the appearance of cracks in the skin. An attempt to strengthen this weld area resulted in a modification of specimens 12 and 13 to replace the indirect resistance welds with blind rivets. Specimen 12 carried the 160-db noise for almost twice as long as specimen 10 or 11 before skin cracking started. Once started, the cracks grew with continued exposure and fragments of skin actually broke loose as shown in figure 32. It should be noted, however, that the first failures noted in specimen 12 occurred in spot welds between the transverse frame and transverse shear web, well beneath the surface of the panel. Thus, it appears that for this type of structure, intense noise can start failures beneath the outside surface as easily or even more easily than on the surface. The test at 1,600° F on specimen 13, which also had the riveted modification, showed that after 5 minutes the Monel rivets attaching the skin panels to the expansion joint and transverse frame had failed badly. These rivets were replaced with a new set and testing was resumed at a maximum temperature of 1,200° F and a sound pressure level of 151 db. The exposure times listed in table XII for specimen 13 are times at combined noise and maximum temperature. The noise was started first and then the specimen was heated to temperature so that for the 180 minutes tabulated, the specimen actually was exposed to the noise level for 216 minutes. No evidence of skin-panel cracking was detected. The welds in the shear web again were a source of early failure in the structure. #### Wind-Tunnel Flutter Tests Two skin-panel specimens were flutter tested in the Langley Unitary Plan wind tunnel. Each specimen was 24.5 inches square with an expansion joint along one edge. They were mounted in a panel support fixture which held them parallel to the flow in the tunnel test section and about 12 inches out from one side wall. One panel was mounted with its corrugations parallel to the air flow and the other was mounted with the corrugations perpendicular to the flow. A quartz-lamp heater was constructed in the tunnel side wall in order to produce high temperatures in the specimen and to simulate the aerodynamic heating effects of higher velocities. The tunnel was operated at a constant Mach number of 1.87 for all the tests, and the dynamic pressure was slowly increased throughout each test until the panel fluttered or until the maximum operating condition for the tunnel was reached. The three panel flutter tests on two specimens listed in table XIII initially pointed up a serious problem. As shown in table XIII a corrugation-stiffened skin panel with the corrugations oriented perpendicular to the direction of air flow fluttered and was totally destroyed in about 10 seconds at the supersonic test conditions. A similar panel was turned 90° so that the corrugations were parallel to the flow. It did not show any indication of flutter up to the maximum dynamic pressure at which the tunnel could be operated. A recent analysis of this problem is presented in reference 9. The analysis shows that large reductions in flutter stiffness may be induced by small deviations in flow angularity with respect to the axis of the corrugations. The test temperatures of 125° F for these first two tests were the equilibrium operating temperature of the tunnel at high dynamic pressure. The third test was a repeat of the second one with corrugation parallel to the air flow; however, when maximum dynamic pressure was reached, the quartz-lamp radiator was energized and brought the panel temperature up to 600° F with no flutter evident. Under static conditions, the radiator could easily produce temperatures of 1,600° F on the panel, but under the supersonic, high-dynamic-pressure conditions the panel was aerodynamically cooled so that a temperature of 600° F was the maximum that could be achieved. #### CONCLUSIONS A full-scale structural model of a lifting reentry glider was built and
design concepts of corrugated sheetmetal and special expansion joints were incorporated so as to alleviate thermal stresses but maintain load-carrying ability in the presence of the large temperature variations throughout the model such as would be encountered in a lifting reentry. The environmental test results with this model as well as with numerous components indicates that the design concepts functioned satisfactorily and enabled the model successfully to withstand the imposed loads and heating at levels simulating a reentry. The following specific conclusions were made as a result of the tests and analysis conducted on the model and components. #### MODEL - 1. Bending deflections resulting from loads and elevated temperatures can be approximated with reasonable accuracy by elementary theory even though tip deflections due to temperature differences may be two to three times as large as those due to loading. - 2. Average axial strains due to bending loads show good correlation with calculated averages both at room and elevated temperatures. Strains due to thermal stress are small compared with strains due to load. - 3. Torsional stiffness is provided by the corrugation-stiffened skin panels although not to the extent indicated by calculations made by assuming elementary torque-box behavior. #### CORRUGATED SHEAR WEBS 4. Elastic shear stiffness as measured by beam tip deflection can be calculated adequately by using developed lengths of corrugation and by considering an additional flexibility designed into the transverse-frame type of corrugation. - 5. Shear strains in solid corrugated webs are uniform and predictable. Cutouts in the webs increase the general level of strain and make it highly nonuniform. - 6. Failure of the 60° flat corrugations with a doubler strip along the connected edges was by local buckling of the corrugation elements at the design stress. Without the doubler strips, failures occurred in the web-spar cap connections at somewhat lower stress levels. Cutouts with or without stiffeners reduced the strength considerably. - 7. Strength of the transverse-frame corrugation was consistently low with or without doublers and/or cutouts. The extra flexibility designed into this corrugation produced a low-stress general instability failure. #### CORRUGATION-STIFFENED SKIN PANELS - 8. Buckling of the beaded-surface elements occurred at high compressive stress levels which could be produced by thermal stresses due to high transient heating rates or combinations of thermal stress and stress due to normal air loads. - 9. Bending stiffnesses and deflections are predictable at room and elevated temperatures from zero to maximum load. - 10. Failures under normal air load at all temperature levels occurred at large center deflections with highly plastic stresses. - ll. Resistance to 160-db random frequency noise lasted about 40 minutes at room temperature before cracks appeared in the surface along the edges of the panels. Crack growth was slow but progressive. No cracks were evident in the skin after 180 minutes of exposure to 151 db at $1,200^{\circ}$ F. - 12. Panel flutter of corrugation-stiffened skin panels did not occur at either room or elevated temperature in supersonic air flow parallel to the corrugation axis. With the air flow across the panel surface perpendicular to the corrugation axis, panel flutter destroyed the specimen. Langley Research Center, National Aeronautics and Space Administration, Langley Station, Hampton, Va., January 2, 1964. #### APPENDIX A # TEST DATA ACQUISITION Data have been acquired in a series of tests on the lifting reentry model, skin panel components, and shear-web components at room temperature and elevated temperatures. All three types of specimens were instrumented with strain gages, thermocouples, load cells, and deflectometers. The sections which follow discuss installation and data accuracy specifically for the glider model with its 414 transducers. However, the comments are generally applicable to the other two types of test specimen. #### DATA RECORDING Electrical signals from 414 transducers were recorded on magnetic tape in a central data recording facility at the Langley Research Center which had a capability for handling 99 analog transducers. Recording and readout accuracy is approximately 0.1 percent of full-scale signal. All room-temperature load tests had to be made twice to handle 84 strain gages on one test and 24 deflectometers on the next test. Heat and load tests had to be made four times at each temperature level in order to record all working transducers. A transit was used to measure optically the lateral deflection of the nose of the model. #### CYCLIC REPEATABILITY Repeatability of heat input for the four cycles at $1,600^{\circ}$ F was monitored from cycle to cycle by seven temperature-control thermocouples located at various points on the heated surface and by one thermocouple located near the center of the heated surface. Readings of the seven control thermocouples are tabulated for one of the cycles in table VIII(b). The other cycles repeated within $\pm 10^{\circ}$ F. The one data thermocouple, No. 132, is tabulated in each of the four cycles and repeats within $\pm 10^{\circ}$ F. In addition 9 of the thermocouples associated with strain gages that are listed in table VIII(a) are also reported in table VIII(c) or VIII(d) in order better to define temperature distributions in the cross sections of the spar-cap members. These thermocouples (thermocouples 95, 99, 101, 103, 105, 107, 113, 114, and 116) indicate that the first heating cycle was 10° to 20° hotter than the third or fourth cycle with respect to the bottom cap members but was within $\pm 5^{\circ}$ for the top cap members. Vertical tip deflection of the model was also monitored from cycle to cycle. Deflections showed the same trend as in figure 12(a) with the maximum cycle-to-cycle difference in deflection of 0.075 inch (2.6%) occurring at 400 seconds test time. Accuracy of the various transducers on this 1,600° F test is difficult to assess precisely. However, the following remarks should give an indication of the accuracy obtainable. #### LOAD CELLS Two load cells were located in the whippletree linkage as shown in figure 4(a). Load-cell output was calibrated at room temperature against a universal hydraulic testing machine having an accuracy of ±0.5 percent of indicated load. Output at a 3,000-pound load was about 1/4 full scale on the recorder for each load cell. Thus, loads at room temperature are accurate to about ±1 percent. During the 1,600° F test, however, the load-cell temperatures were observed to rise from 75° F to 117° F in a linear fashion according to thermocouples welded to the outside case. After the fourth heating cycle listed in table VIII, another similar heating cycle was imposed on the model but with the loading jacks disconnected so that the load cells were unloaded throughout the heating cycle. Their output indicated an apparent tensile load increasing linearly from zero to about 280 pounds during the cycle. This drift in zero load output probably is caused by thermal gradients through the interior of the load cell. All loads in the 1,600° F test have been corrected for this apparent drift with temperature. Negative (compression) loads at the start and end of the heating cycle, table VIII(a) or (b) are the result of the friction in the hydraulic loading jacks. During a cycle the loading was maintained at a prescribed level by monitoring hydraulic pressure delivered by a pumping unit to the two jacks. At the start of a heating cycle, the model would deflect downward and tended to compress the load cells and the jacks. Until positive loading began, the friction in the system prevented the operator from maintaining close control of a small preload. #### DEFLECTOMETERS Model vertical deflections were measured by 24 deflectometers mounted on steel base plates beneath the model (fig. 4(a)). Deflectometers consisted of aluminum cantilever beams with four strain gages mounted near the root of each beam, wired to form a Wheatstone bridge with maximum sensitivity to a given tip deflection. A furnace check had established that drift of an unrestrained deflectometer when heated slowly from room temperature to 150° F was negligible. Actual temperature changes monitored on the mounting plates beneath an asbestos shield indicated temperature changes of less than 10° F during the heating cycle. Piano wire (0.016-inch diameter) connected the deflectometers to the load points on the lower surface of the model. Locations are shown in figure 5(g). Thermocouples were welded to the piano wires at stations 47, 120, and 192. The most severe temperatures were recorded at station 47 and are tabulated in table VIII(b) as TC 294 to TC 296 (fig. 5(c)). These thermocouples reached equilibrium temperatures at the same time as the heated skin and the corresponding thermal expansion of the piano wire is calculated to be 0.014 inch. The expansion is 0.5 percent of the peak experimental deflections and has been neglected. #### THERMOCOUPLES Thermocouple locations on the model are shown in figures 5(c) to 5(f). Thermocouples used were No. 30 chromel-alumel wire with high-temperature varnish-impregnated glass-braid insulation. Thermocouple accuracy was ±5° from 32° F to 530° F and ±0.5 percent from 530 to 2,300° F. Installation was made by spot welding the individual chromel and alumel wires to the model approximately 1/16 inch apart, alined so as to minimize the thermal gradient between them. All skin thermocouples were installed on inside surfaces in order to be shielded from direct radiation from the heat lamps. Cold junctions were inside 24-pin AN cable connectors where a transition was made from the chromel-alumel leads to copper leads. These plugs were mounted in a rack about 25 feet from the model. Temperature of the plugs was monitored throughout the test and
remained within 1° of the room temperature. All 304 thermocouples were working satisfactorily at the start of the 1,600° F tests. As noted in table VIII four thermocouples either failed or began reading erratically during the 1,600° cycles. #### STRAIN GAGES Strain gages were applied in various locations as shown in figures 5(a) and 5(b). For measurements at room temperature, 44 foil strain gages of various types were used. Gage errors including bridge-voltage fluctuations were less than ±1 percent of indicated strain. Recorder error corresponded to less than ±5 microinches per inch. Skin panel riveting and model mounting in the test setup produced failures in 8 of the 44 room-temperature gages. One additional gage failed during the various load cycles prior to heating. For measurements at elevated temperatures, 40 foil gages of two types were used. Eighteen of these were inoperative prior to the 1,600° F test as follows: 9 gage failures (3 during model assembly, 2 during room-temperature load tests, 4 during heating cycles), and 9 gage installations which had been cycled to temperatures exceeding 800° F. An upper temperature limit of 800° F was selected for prior cycling based on cycle-to-cycle repeatability as discussed in a subsequent paragraph. Spar caps were instrumented with gages nominally rated for temperatures to 600° F and skin panels with gages rated for much higher temperatures. Installations were made with a ceramic-type cement cured at 600° F for 1 hour. Gage leads of stainless-steel-clad copper wire were attached to short strips of nichrome foil by spot welding; these strips in turn were spot welded to the gage tabs. A three-wire lead system was used to compensate for temperature effects in the lead wires. Temperature compensation of the gages was not attempted because of the large thermal gradients expected. Gage installation temperatures were obtained by thermocouples spotwelded to the model on the gage center line within 1/2 inch of the gage. Strain-gage bridges were balanced at the start of the heating and loading cycle and total output was recorded as a function of time during the cycle. This output was then corrected twice to obtain strain readings caused by stress. The apparent strain due to temperature was subtracted from the total output and the residual strain was corrected for change in gage factor at temperature. Apparent strain due to temperature was obtained by installing a gage and thermocouple on a 1 by 6 by 0.03 inch strip of heat treated Inconel X, mounting the strip as a free cantilever beam under a radiant heater, and cycling the assembly through a temperature history corresponding to that which the large model had been exposed to. Results are plotted in figure 33 for one gage of each type. Temperature rise rates varied considerably with respect to different gage locations in the large model as well as with respect to time or temperature level. For calibration purposes, each gage was cycled four times to each of a series of successively greater temperatures corresponding to the large model programed peak temperature. For peak temperature less than the lowest shown in figure 33, no effect of cycling or cycling rate was ascertained. At higher cyclic temperatures an effect of cycling is produced and the apparent strain correction to be made depends on the prior temperature history of the gage. For the $<\!\!600^\circ$ type gage apparent strains are less than 280 microinches per inch with a cycle-to-cycle repeatability of ± 15 microinches per inch up to 800° F. For the $<\!\!600^\circ$ type gage apparent strains become very large exceeding 8,000 microinches per inch at 800° F although the cycle-to-cycle repeatability is less than ± 50 microinches per inch at temperatures up to 800° F. At temperatures greater than 800° F, cycle-to-cycle repeatability becomes very poor exceeding $\pm 1,000$ microinches per inch. No attempt was made to verify the manufacturer's gage factor variation with temperature, figure 33(c). However, evaluation of similar type gages on stainless steel at the National Bureau of Standards indicated good repeatability of gage factor. These evaluations also indicated low drift in gage output at constant temperatures up to 700° F. # APPENDIX B ## STRUCTURAL CONCEPT MODEL ANALYSIS The design of a large structural concept model of a lifting reentry glider has been discussed in the body of this paper. The feasibility of the design concepts for thermal stress relief was demonstrated by a test program. This appendix develops appropriate methods of analysis. #### RESPONSE TO ROOM-TEMPERATURE BENDING LOADS #### Beam Bending The main beams are divided into seven elements as shown in figure 34 to facilitate calculation for all the variables involved. The different element lengths are chosen so that elements begin or end at points of load application on the model. The root of the beam, station 205, is assumed to be fixed; that is, $$\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)_{205} = 0 \tag{B1}$$ $$\left(\mathbf{y}\right)_{205} = 0 \tag{B2}$$ Each element is assumed to have a constant curvature over its length equal to the curvature at the element midpoint. Thus at station 192, the slope can be written $$\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)_{192} = \left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)_{205} + l_1\left(\frac{l}{\rho_1}\right) \tag{B3}$$ and the element deflection can be written as the product of the average element slope and length: $$(y)_{192} = (y)_{205} + \frac{1}{2} \left[\left(\frac{dy}{dx} \right)_{205} + \left(\frac{dy}{dx} \right)_{192} \right] l_1$$ (B4) and at station 168 $$\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)_{168} = \left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)_{192} + l_2\left(\frac{1}{\rho_2}\right) \tag{B5}$$ $$(y)_{168} = (y)_{192} + \frac{1}{2} \left[\left(\frac{dy}{dx} \right)_{192} + \left(\frac{dy}{dx} \right)_{168} \right] i_2$$ (B6) and so on to station 47 at the tip $$\left(\frac{\mathrm{d}\mathbf{y}}{\mathrm{d}\mathbf{x}}\right)_{1+7} = \left(\frac{\mathrm{d}\mathbf{y}}{\mathrm{d}\mathbf{x}}\right)_{72} + \iota_{7}\left(\frac{1}{\rho_{7}}\right) \tag{B7}$$ $$(y)_{47} = (y)_{72} + \frac{1}{2} \left[\left(\frac{dy}{dx} \right)_{72} + \left(\frac{dy}{dx} \right)_{47} \right] \iota_{7}$$ (B8) which when expanded, substituted into, and reduced gives the tip deflection $$\delta_{\text{bending}} = (y)_{47}$$ $$= 1970 \left(\frac{1}{\rho_{1}}\right) + 3192 \left(\frac{1}{\rho_{2}}\right) + 2616 \left(\frac{1}{\rho_{3}}\right)$$ $$+ 2040 \left(\frac{1}{\rho_{4}}\right) + 1464 \left(\frac{1}{\rho_{5}}\right) + 888 \left(\frac{1}{\rho_{6}}\right) + 312 \left(\frac{1}{\rho_{7}}\right)$$ (B9) The element curvature terms in equation (B9) can be expressed for a general case as $$\left(\frac{1}{\rho_{i}}\right) = \left(\frac{M}{EI}\right)_{i} \qquad (i = 1, 2, 3 \dots 7) \qquad (Blo)$$ For room-temperature loading the bending moment in equation (BlO) is evaluated at the midpoint of each element of length. The moment of inertia of the cross section at the midpoint of each element can be obtained from the information given in table I. #### Beam Shear Deflection calculations for the shear deformations of the main beams are made by using the same seven elements of length as in the bending calculations (fig. 34). The assumption is made that the shear stress in the corrugated webs of the main beams is uniformly distributed across the depth of the web inasmuch as the corrugations reduce the bending stiffness of the webs to a negligible quantity. Thus the shear deflection of any element is $$\left(\delta_{\text{shear}}\right)_{i} := \gamma_{i} \times \left(\text{Developed length}\right)_{i}$$ (B11) The developed length of the 60° corrugated webs used in the main beams (fig. 2(b)) is 4/3 of the linear length. The shear deflection at any station along the beam is the sum of the shear deflections in the individual elements from the root out to the station in question. Thus, for the shear deflection at the tip, $$\left(\delta_{\text{shear}}\right)_{47} = \sum_{i=1}^{7} \left(\gamma_{i}\right)\left(\frac{4}{3}\right)\left(l_{i}\right) = \frac{4}{3} \sum_{i=1}^{7} \left(\frac{\tau l}{G}\right)_{i}$$ (Bl2) The shear stress in each element is an average stress since the shear stress varies along the length of the beam because of the tapered depth. The bending moment is assumed to be carried completely by axial forces in the spar caps. Due to the inclination of the bottom spar cap, shear is carried by the webs and the vertical component of the axial force in the bottom spar cap. Thus when the appropriate values of load, length, depth, and thickness are substituted into equation (Bl2), the tip deflection of the model due to shear for a distributed load becomes $$\left(\delta_{\text{shear}}\right)_{47} = \frac{{}^{14.8P_{192}}}{G_{1}} + \frac{{}^{146.8P_{168}}}{G_{2}} + \frac{90.0P_{144}}{G_{3}} + \frac{130.3P_{120}}{G_{14}} + \frac{172.2P_{96}}{G_{5}} + \frac{213.0P_{72}}{G_{6}} + \frac{196.0P_{47}}{G_{7}}$$ (B13) The numerical subscripts on the applied loads P designate the station at which load is applied, and those on the shear moduli G designate the element of beam length (fig. 34) to which they apply. At room temperature, G = 12.0×10^6 psi in all elements. #### Support Deformation Deflections of the model under applied loads are influenced by deformation of the model support. The calculations derived in the section "Beam Bending" were based on the assumption of a fixed root. However, an experimental determination showed that the model support deformed elastically at the root whenever the model was loaded. This elastic-support deformation produces two types of deflection in the model which are the result of: # (1) Support deflection $$\delta_{\text{support}} = 6.50(10)^{-7} P$$ (B14) # (2) Support rotation $$\beta_{\text{support}} = 1.55(10)^{-9} M_{205}$$ (B15) Support deflection
occurs when a load P is applied anywhere on the model and results in an equal amount of model deflection at every station. Support rotation occurs also when a load P is applied anywhere on the model, but the amount of rotation is proportional to the bending moment produced at station 205 (the root) by the load and therefore is dependent upon the location of the load. Support rotation will produce, at any point on the model, a deflection which is proportional to the distance from that point to the support. Thus, support deflection and rotation produce a model deflection at any station which is expressed as $$\delta_{\text{support motion}} = 6.50(10)^{-7}P + 1.55(10)^{-9}(M_{205})(205 - \bar{x})$$ (B16) where \bar{x} is the number of the station at which the deflection is being calculated; thus, at the tip of the model, $$(\delta_{\text{support motion}})_{47} = 6.50(10)^{-7}P + 1.55(10)^{-9}(M_{205})(158)$$ (B17) #### RESPONSE TO ROOM-TEMPERATURE TORSION LOADS Calculations for the angle of twist produced by an applied torque on the model are made with the torsion assumed to be carried in the shell of a torque box composed of skin panels and closure pieces along the structural leading edges. The angle of twist is $$\theta = \frac{\text{Pa}}{\overline{\text{GI}}} \tag{B18}$$ $$\overline{GJ} = \frac{4A^2}{\oint \frac{ds}{Gt}}$$ (B19) The line integral ds/Gt is evaluated by summing the lengths of various parts of the perimeter around the cross section of the model. Each part is divided by its shear modulus and thickness prior to summing. The thickness used for corrugated skin panels in the torsional analysis is obtained from the effective thickness of the panel in plane shear. For the type of corrugation used (fig. 3(c)) the effective thickness of the panel becomes 1.75 times the thickness of a single sheet. Adjusting the effective thickness for the 22.5 inches of panel and 1.5 inches of expansion joint in each 24-inch length of structure gives an average effective thickness for the corrugated skin panels, $\bar{t}_{skin} = 0.0166$ inch. The corrugated closure pieces along the structural leading edges of the model have an effective thickness, $\bar{t} = 0.0080$ inch. The model length was divided into elements 24 inches long (fig. 34) as in the bending calculations, and the torque box in each element was assumed to have the properties of the midlength cross section. At station 192 the skin-panel torque box ended, and the torque was assumed to be carried into the model support at station 205 by differential bending of the two main beams. The total angle of twist at any station was calculated by summing the increments of twist in each element from the root out to the station in question. Angles of twist calculated on the basis that the torsion is carried by the skin panels are about 5 times smaller than the experimental angles of twist, as shown in figure 8. #### RESPONSE TO COMBINED HEATING AND BENDING LOADS Calculated deflections shown in figure 12(a) are based on equation (B9) with the following expression used for curvature in place of equation (B10) $$\left(\frac{1}{\rho_{i}}\right) = \left(\frac{\alpha_{T}\overline{T}_{T} - \alpha_{B}\overline{T}_{B}}{H_{T} + H_{B}}\right)_{i} + \left(\frac{M}{EI}\right)_{i} \qquad (i = 1, 2, 3 \dots 7) \quad (B20)$$ For combined heating and loading cases, the curvature becomes a function of the temperatures in the top and bottom spar caps of each element of beam length as well as a function of bending moment. Measured temperatures in the spar caps are tabulated in table VIII. However, these temperatures must be corrected in order to give an appropriate average temperature. Figure 10(e) indicates the kind of variation in temperature that occurs along the length of the spar caps at any given time. Figure 13 illustrates the variation in temperature that occurs in the cross section of the spar caps. Correction terms given in figure 35 have been obtained from a series of plots similar to figures 10(e) and 13. These correction terms are used to calculate the average temperature of a spar cap in any element from the measured midpoint temperature as in the following equations $$\left(\overline{T}_{T}\right)_{i} = B_{i}\left(T_{T}\right)_{i} \tag{B21}$$ and $$(\overline{T}_B)_i = C_i(T_B)_i$$ (i = 1,2,3 . . . 7) (B22) Particular values of the coefficient of thermal expansion α in equation (B20) are calculated from the following expression at appropriate temperatures: $$\alpha = 7.575(10)^{-6} - 1.210(10)^{-10}T + 7.112(10)^{-13}T^{2}$$ (B23) This expression for α was obtained by fitting a curve to the experimental data given in reference 5 by the method of least squares. When bending moments are applied to the main beams in the presence of temperature, the value of the modulus of elasticity for the material in the last term of equation (B20) must be evaluated at the average of the temperatures in the top and bottom spar caps of any element. An expression for the modulus of elasticity at any temperature for Inconel X heat treated 2 hours at 1,400° F that was obtained by the method of least squares by fitting the appropriate experimental data in table II and references 4 to 6 is as follows: $$E = 31.657(10)^6 - 1649.3T - 3.9936T^2$$ (B24) Equations (B13) and (B17) for beam-shear and support-motion effects were also used in the deflection calculation made during the applied load pulse. A different value of G was used in each term of equation (B13) corresponding to the average temperature of each element. The value of G is reduced at elevated temperature in the same ratio as the modulus of elasticity E is reduced (eq. (B24)). One additional contribution to the calculated deflection shown in figure 12(a) is determined as follows: Static deflection of the model tip at room temperature due to the deadweight of the model and its whippletree loading fixtures is calculated to be 0.175 inch for the 1,400-pound load. This deflection was on the model when the instrumentation was zeroed at room temperature prior to the test and is not included in any measured or calculated deflections presented in this paper. However, as the main beams heated up, their material moduli of elasticity decreased with temperature and resulted in an increase in the static, deadweight deflection, which was measured by the deflectometers and is included as an additional contribution to calculated tip deflection. Maximum value of this additional deflection increment was calculated to be 0.036 inch. Considering the variation in temperatures in the main beams the agreement between measured and calculated deflections in figure 12(a) is satisfactory. ## APPENDIX C ## CORRUGATED SHEAR-WEB COMPONENT ANALYSIS Tests of 15 corrugated shear-web beams under combinations of heat and load were reported in the body of this paper and in table X. Details of the methods of analysis are given in this appendix. ### SHEAR DEFLECTIONS Corrugated shear-web deflections can be calculated with reasonable accuracy by use of elementary principles of elasticity and strength of materials. In addition, for the tip-loaded cantilevered beam, it is assumed that all the bending moment is resisted by the beam flanges and all the shear is uniformly carried by the developed length of the corrugated web. Further, the "picture-frame" construction of flanges and plates is assumed not to restrain shear deflections of the web. Tip deflection for the 60° corrugation beam (fig. 15(a)) is calculated for elastic loading as follows: $$\delta = \gamma \times \text{(Developed length)}$$ $$= \frac{\tau}{G} \times \text{(Developed length)}$$ $$= \frac{P}{\text{tdG}} \times \text{(Developed length)}$$ $$= \frac{P}{(0.0181)(17.98)(12)(10)^6} (1.333)(33.5) \tag{C1}$$ $$\delta = 1.143(10)^{-5} P \tag{C2}$$ This relationship between load and calculated elastic deflection for the 60° corrugation is plotted as a solid line in figure 18(a). If applied, corrections for plasticity and elevated temperature would be of the right sense to correlate with the experiments. When the corresponding dimensions for the transverse frame corrugation beam are substituted into equation (C2), the calculated deflection is only about 10 percent of the experimental value and indicates that a different mode of elastic deformation occurs when the transverse frame corrugation is loaded. Figure 36(a) is a schematic of the deformation which can occur as a result of the shear flow q bending the elements (2) and (3) as cantilever beams. The center, beaded element (1) which is not attached to either spar cap is essentially floating on the two cantilever elements and thus displaces sideways when they bend so that an effective shear displacement of the element that can be calculated in the following manner occurs. Element (1) not only displaces sideways, but also bends as shown in figure 36(b) and in accordance with the following equations: For all elements $$\frac{d^2y}{dx^2} = \frac{M}{EI} \tag{C3}$$ For element (1) $$\phi = \left(\frac{dy}{dx}\right)_{x=0} = \frac{1}{EI} \left(-\frac{M_1 b_1}{2}\right)$$ (C4) Element (2) or (3) bends as shown in figure 36(c) and in accordance with the following equations: For element (2) or (3) $$\phi = \left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)_{\mathrm{x=0}} = \frac{1}{\mathrm{EI}} \left[M_1 b_2 - \left(\frac{\mathrm{qb_1}}{2}\right) \frac{b_2^2}{2} \right] \tag{C5}$$ $$(y)_{x=0} = \frac{1}{EI} \left[\left(\frac{qb_1}{2} \right) \frac{b_2^3}{3} - \frac{M_1 b_2^2}{2} \right]$$ (C6) When the end slopes of elements (1) and (2) are equated, equations (C4) and (C5) give $$M_{\perp} = \frac{\left(\frac{qb_{\perp}}{2}\right)b_{2}^{2}}{\left(2b_{2} + b_{\perp}\right)} \tag{C7}$$ from which the tip deflection of element (2) becomes $$(y)_{x=0} = \left[\frac{\left(\frac{qb_1}{2}\right)b_2^3}{3EI} \right] \left[1 - \frac{3}{4\left(1 + \frac{b_1}{2b_2}\right)} \right]$$ (C8) If the numerical values $b_1 = 1.66$ in., $b_2 = 0.50$ in., and EI =
25.44 lb-in.² are substituted in equation (C8), $$(y)_{x=0} = 9.76(10)^{-1/4}q$$ = $5.66(10)^{-5}P$ (C9) Since the shear flow acts in one direction along the top of the corrugated web and in the opposite direction along the bottom, the cantilever elements (2) and (3) deflect correspondingly with no motion occurring at the center. If the variation in deflection with distance above or below the web center is assumed to be linear, the effective shear strain in element (1) becomes $$\gamma_{\text{eff}} = \left[\frac{(y)_{\text{element (2)}}}{2} \right] \left(\frac{1}{d/2} \right) = 1.312(10)^{-5} P$$ (C10) Tip deflection for the transverse-frame corrugation beam becomes $$\delta = \gamma \times (\text{Developed length of web}) + \gamma_{\text{eff}} \times (\text{Developed length of element (1)})$$ $$= 2.26(10)^{-5}P + 31.68(10)^{-5}P$$ or $$\delta = 33.94(10)^{-5}P \tag{C11}$$ This analysis and the test results indicated that the transverse-frame corrugation was extremely flexible and large tip deflections occurred with load. Because of the large deflection, a special calibration test was made of the flange and end-plate assembly without a shear web. The calibration test established experimental stiffnesses of the flange assemblies of 670 lb/in. at room temperature. Thus tip deflection for the transverse-frame corrugation beam corrected for flange stiffness is $$\delta = 27.60(10)^{-5}P \tag{C12}$$ Comparison of equation (C2) with equation (C12) shows that the transverse-frame corrugation has 24 times the deflection of the 60° by 1-inch flat corrugation for the same applied load. Equation (C12) is plotted as the solid line in figure 18(b) where it is compared with the experimental deflections for the various transverse-frame corrugation beams. Corrections to the deflection equation (Cl2) for plasticity and elevated temperature could be made and qualitatively would be in the right direction to correlate with the experimental deflections shown in figure 18. #### BUCKLING AND FAILURE LOADS Because the extreme flexibility of the model transverse-frame corrugation resulted in large deflections prior to failure, the beam failure loads listed in table X need to be corrected for the increment of total load carried by the flanges. The column headed "Flange load" lists the increment of load calculated to be carried by the flanges at failure, based on the experimental flange stiffness (670 lb/in. at room temperature) and the test beam deflection at failure. Flange loads are subtracted from "Beam failure loads" in order to calculate the average experimental shear stress in the web at failure (table X). The flange load correction to be made to the beam failure loads in table X is normally considered insignificant in this type of test. However, the large deflections and low failure loads for the transverse-frame corrugations made a correction necessary. The flanges carry from 10 to 30 percent of the beam load for the transverse-frame corrugation at failure. For the more standard 60° corrugation, the flange load is only 2 to 5 percent. Four types of failure are indicated in table X. Two of these can be calculated quite readily. The web-cap spotweld connection fails by shearing the spot welds. The average strength at failure is the ultimate shear stress times the ratio of spotweld connection area to maximum potential connection area. $$\tau_{f} = \tau_{ult} \left(\frac{A_{connection}}{A_{beam}} \right)$$ (C13) The calculated curves in figure 19 for web-cap connection strength are based on values of shear ultimate stress equal to one-half the tensile ultimate stress for the material at test temperature. The area of spotweld connection is evaluated in terms of the side of a square whose area would equal the rectangular area enclosing the spotweld pattern on each corrugation. Thus, for the 60° corrugation, $$\tau_{\rm f} = \tau_{\rm ult} \left[\frac{(0.86)(0.018)}{(2.00)(0.018)} \right] = 0.430 \tau_{\rm ult}$$ (C14) and for the model transverse-frame corrugation, $$\tau_{f} = \tau_{ult} \left[\frac{(0.38)(0.010)}{(3.36)(0.010)} \right] = 0.113\tau_{ult}$$ (C15) Web-cap connection strength for the beams with doublers is not calculated but would be greater by the amount of increase in the connection-sheet thickness. Element buckling is calculated for the flat-plate elements in either of the two corrugation designs by assuming them to be long, simply supported plates buckling elastically in shear. Thus, $$\tau_{\rm cr} = \frac{5.35\pi^2 E}{12(1 - \mu^2)} \left(\frac{t}{b}\right)^2$$ (C16) The modulus of elasticity is evaluated at appropriate test temperature. The presence or absence of doublers along the edges of the web does not have any significant effect on the element buckling stress as determined by equation (Cl6). Shear-web strengths shown in figure 19 indicate that for the range covered (80° to 1,200° F) temperature has about the same effect on strength regardless of the mode of failure. The 60° corrugation web-cap connection failures are indicative of the problem of achieving sufficient connection area in corrugated webs to carry the high shear stresses required of efficient beams. Adding the doubler strips along the connected edges increased the connection area sufficiently to reach a shear stress at least as great as the element buckling stress for this particular design. The doubler had no particular effect on element buckling stress and at the high stress level, element buckling and maximum strength can be expected to be equal. The agreement between calculated element buckling and experimental maximum strength is adequate for the 60° corrugation (fig. 19). ## APPENDIX D ## SKIN-PANEL COMPONENT ANALYSIS Tests of nine corrugation-stiffened skin panels subjected to heat and normal air load were reported in the body of this paper and table XI. Methods of deflection analysis are given in this appendix. Comparison of calculated load-deflection curves with the experimental room temperature and 1,600° F uniform cases is shown in figure 28(b). The agreement shown at room temperature is reasonable especially in the plastic portion where small uncertainties in stress-strain curves at large plastic strains can produce large effects. For the test at 1,600° F the calculations give good agreement with the initial thermal deflection which is elastic and thus requires only a knowledge of elastic modulus. Under load, however, the uncertainty in material yield and plastic stresses shows up in deviation between calculated and experimental deflections. Calculations for the center deflection of any of the corrugation-stiffened skin panels are based on several assumptions. The panel is assumed to bend under load and temperature in the same manner as a simply supported beam rather than as a plate since the bending stiffness across the corrugation is essentially negligible compared to the bending stiffness parallel to the corrugations. The beam, which is assumed to represent the skin panel, is composed of one corrugation element and associated beaded cover sheet 1.5 inches wide, which is the basic repeating element in the skin-panel design (fig. 37(a)). Distributed normal load on the beam (fig. 37(a)) produces the bending-moment diagram (fig. 37(b)) from which, after considerable effort, the beam curvature diagram (fig. 37(c)) is constructed with temperature effects included. Deflection of the beam is calculated by utilizing the first moment of the area under the curve of beam curvature. The moment is taken with respect to the end of the beam. In the elastic stress range, beam curvature is related to bending moment by the expression, $\frac{1}{\rho} = \frac{M}{ET}$, in which EI is constant for all values of moment. For plastic bending, the relationship is not constant and must be evaluated at every value of moment as in the bending-moment-curvature plot of figure 37(d). At any station along the length of the beam, curvature can be expressed in terms of any two strains in the cross section and the distance between the strain locations, if the total strain is assumed to vary linearly with distance from the neutral axis. Thus, $$\frac{1}{\rho} = \frac{\epsilon_{\dot{1}} - \epsilon_{\dot{j}}}{y} \qquad (i \neq j) \qquad (D1)$$ and the strain can be expressed as thermal expansion plus strain due to stress $$\epsilon = \alpha T + \epsilon_{\sigma}$$ (D2) In order to evaluate temperatures and stresses, the cross section of the beam is divided into parts (12 parts were used in this analysis). Temperatures of each of the 12 parts are determined by reference to temperature-distribution curves similar to those in figure 26(b). The coefficient of thermal expansion is calculated from equation (B23) for the appropriate temperatures. The calculation process begins with the assumption of two values of total strain for equation (Dl) and calculating the corresponding total strains in each of the 12 parts. Strains due to stress can then be calculated (eq. (D2)), and the plastic stresses corresponding to these strains can be determined by use of a suitable stress-strain relation. Hill's equation (ref. 10) is used here: $$\epsilon_{\sigma} = \frac{\sigma}{E} + 0.002 \left(\frac{\sigma}{\sigma_{y}}\right)^{n}$$ (D3) Values of E, σ_y , and n have been determined by fitting least-square curves to data obtained from stress-strain tests of İnconel X. The equation for E has been previously given as equation (B24). $$\sigma_{y}$$ = 121,000 - 14.34T (0 < T < 1,290° F) σ_{y} = 361,600 - 201.0T (1,290° F < T < 1,800° F) $$n = 40.0 + 0.0120T - 1.906(10)^{-5}T^{2}$$ (D5) Forces in the beam cross section corresponding to the stresses calculated by equation (D3) are summed for the 12 parts. Because no axial forces are applied to the beam, static equilibrium requires the summation of forces to be equal to zero. Generally, the first assumptions of strain in equation (Dl) will not result in summation of force equal to zero, so new
values of strain will have to be assumed and the calculation repeated until force equilibrium is achieved. When force summation equals zero, a summation of moments due to the forces in each part can be made, and this will be the bending moment which is in equilibrium with the particular set of strains assumed. Beam curvature can also be calculated (eq. (Dl)) and a point can be plotted to begin generating a moment-curvature plot such as figure 37(d). This particular point gives the beam curvature at any station along the length of the beam where the bending moment is equal to the calculated value. Repeating the foregoing calculation procedure for other sets of assumed strains will produce additional points through which the moment-curvature curve can be drawn (fig. 37(d)). The initial offset at zero moment is the curvature due to temperature differences through the cross section at the start of loading and results in an initial center deflection at zero load as shown in figure 28. The calculation procedure outlined applies to combined heating and loading cases. Corresponding calculations for loading at room temperature are simplified somewhat by having a constant temperature for all parts of the beam and therefore only one set of material properties. However, the plastic stress-strain relations must be observed where needed. Calculations for the panels tested at room temperature indicated that stresses on the compression side of the beam remained well below the local buckling stresses of the several parts which were compressed. However, for the 1,600° uniform heating tests, both the beaded part and the double-thickness seamwelded flat part were at high temperatures with resulting low stress-strain curves compared with the parts on the tension side of the beam. In order to maintain equilibrium of forces, the strains on the compression side became large along with those on the tension side as the beam bent plastically. Both the beaded part and the double-thickness flat part were strained beyond their calculated buckling strains. They were assumed to be stabilized even in the postbuckling condition by the other parts of the beam, but their effectiveness in carrying load was reduced to less than that given by the stress-strain curves. An effective stress-strain curve for the buckled parts can be calculated with the help of the following observations. The stress-shortening curves for both flat and curved plates beyond buckling have been described in reference ll with the following type of equations: $$\frac{\sigma_{\text{effective}}}{\sigma_{\text{edge}}} = \zeta \sqrt{\frac{\epsilon_{\text{cr}}}{\epsilon_{\text{edge}}}}$$ (D6) where the empirical factor $$\zeta = 1 + 0.28 \left(1 - \sqrt{\frac{\epsilon_{cr}}{\epsilon_{edge}}} \right)^3$$ (D7) The edge stress and edge strain are evaluated from the stress-strain curve of the material and the effective stress applies to the same edge strain. The buckling strain is evaluated for a flat plate having the same dimensions as the curved plate. Results of such calculations applied to two parts of the beam are shown in figure 38. There is a region immediately after buckling for the curved plate that is not properly calculated by the equivalent flat plate method as pointed out in reference 11. In this region the curve is faired using engineering judgment. The method as worked out in reference 11 was applied to plates which buckled at elastic stresses. It is assumed that the same method will apply to plates which buckle well out in the plastic range. Using the effective stress-strain curves in place of the material stress-strain curves for the parts of the beam which buckled does not change the procedure for calculating the moment-curvature plot of figure 37(d). It does result, however, in a lower moment-curvature curve (labeled "postbuckling" in fig. 37(d)) than would have existed if buckling had not occurred. #### REFERENCES - 1. Pride, Richard A., Royster, Dick M., and Helms, Bobbie F.: Experimental Study of a Hot Structure for a Reentry Vehicle. NASA TM X-314, 1960. - 2. Anderson, Melvin S., and Stroud, C. W.: Experimental Observations of Aero-dynamic and Heating Tests on Insulating Heat Shields. NASA TN D-1237, 1962. - 3. Peterson, James P., and Card, Michael F.: Investigation of the Buckling Strength of Corrugated Webs in Shear. NASA TN D-424, 1960. - 4. Hughes, Philip J., Inge, John E., and Prosser, Stanley B.: Tensile and Compressive Stress-Strain Properties of Some High-Strength Sheet Alloys at Elevated Temperatures. NACA TN 3315, 1954. - 5. Kurg, Ivo M.: Tensile Properties of Inconel X Sheet Under Rapid-Heating and Constant-Temperature Conditions. NACA TN 4065, 1957. - 6. Schmidt, F. W., Farquhar, John, and Kurg, Ivo M.: Effects of Various Aging Heat Treatments and Solution-Annealing and Aging Heat Treatments on Tensile, Creep, and Stress-Rupture Strengths of Inconel X Sheet to Temperatures of 1,400° F. NASA TN D-374, 1960. - 7. Batdorf, S. B., Schildcrout, Murry, and Stein, Manuel: Critical Combinations of Shear and Longitudinal Direct Stress for Long Plates With Transverse Curvature. NACA TN 1347, 1947. - 8. Edge, Philip M., Jr.: Random-Noise Testing of Aircraft and Missile Components With the Aid of a Laboratory Air Jet. Shock Vibration and Associated Environments Bulletin, No. 27, Pt. II, Dept. of Defense, June 1959, pp. 169-174. - 9. Bohon, Herman L.: Flutter of Flat Rectangular Orthotropic Panels With Biaxial Loading and Arbitrary Flow Direction. NASA TN D-1949, 1963. - 10. Hill, H. N.: Determination of Stress-Strain Relations From "Offset" Yield Strength Values. NACA TN 927, 1944. - 11. Peterson, James P., Whitley, Ralph O., and Deaton, Jerry W.: Structural Behavior and Compressive Strength of Circular Cylinders With Longitudinal Stiffening. NASA TN D-1251, 1962. TABLE I.- DIMENSIONS, AREAS, AND MOMENTS OF INERTIA OF MAIN BEAMS FOR STRUCTURAL CONCEPT MODEL | Station | H _T , | H _B , | c,
in. | h _T , | h _B , | (single s | cional area
spar cap), | I
(single beam), | d,
in. | |------------------|------------------|------------------|-------------|------------------|------------------|-----------|---------------------------|---------------------|-----------| | | (fig. 2(c)) | Тор | Bottom | in. ^l | | | 47 | 1.68 | 1.56 | 0.994 | 0.324 | 0.316 | 0.1705 | 0.1780 | 1.08 | 3.38 | | 72 | 3.30 | 3.06 | 1.153 | . 343 | .470 | . 3988 | .4288 | 8.37 | 6.95 | | 96 | 4.71 | 4.38 | 1.306 | . 398 | .508 | .4141 | .4441 | 17.69 | 9.77 | | 120 | 6.12 | 5.11 | 1.459 | .453 | .546 | .4302 | .4602 | 31.10 | 12.61 | | 144 | 7.50 | 7.06 | 1.612 | .507 | .583 | .4445 | .4745 | 48.70 | 15.43 | | 168 | 8.83 | 8.47 | 1.765 | .562 | .620 | .4600 | .4900 | 71.50 | 18.26 | | 192 | 10.28 | 9.75 | 1.917 | .617 | .658 | .4752 | .5052 | 98.40 | 21.08 | | a ₂₀₅ | 11.03 | 10.47 | 2.000 | | | | | 118.00 | 22.61 | | |] | | <u>.</u> | l <u></u> i | · | | | | | ^aProperties at station 205 are those which would exist if the spar caps extended back from station 192 without interruption. Local stiffening and discontinuities in vicinity of station 205 make actual values unknown. TABLE II.- MATERIAL PROPERTIES OF INCONEL X SHEET Heattreated 2 hours at 1,400° F; air cooled in furnace | Specimen | Thickness,
in. | Temperature, | E,
psi | σ _y ,
psi | σ _{ult} ,
psi | Elongation
in 2 inches,
percent | | | | | | |---|--|---|---|---|---|---|--|--|--|--|--| | | | | Tensile tes | ts | | | | | | | | | 1
2
3
4
5
6
7
8
9
10 | 0.0100
.0100
.0183
.0187
.0326
.0331
.0494
.0497
.0187 | 80
80
80
80
80
80
80
1,600 | 31.0 × 10 ⁶ 31.3 31.3 30.8 31.2 31.3 31.6 31.8 17.5 18.1 | 118.3 × 10 ³ 131.0 119.0 118.0 125.8 128.3 123.8 122.5 38.1 32.9 | 159.5 × 10 ³ 166.5 163.2 160.0 174.6 175.0 181.0 179.0 39.7 34.3 | 14
12
18
14
18
23
16
28
4 | | | | | | | Compression tests | | | | | | | | | | | | | 11
12 | 0.0100
.0100 | 80
80 | 32.1 × 10 ⁶
31.8 | | a112.0 × 10 ³
a112.5 | | | | | | | Spotweld shear tests at room temperature (heattreated after spotwelding) | Specimen | Number of spotwelds | Thickness, | Maximum load,
lb | Cycles to failure | |----------|---------------------|------------|---------------------|-------------------| | 13 | bl | 0.0103 | 301 | 1 | | 14 | 1 | .0102 | 325 | | | 15 | 1 | .0102 | 306 | 1 | | 16 | 1 | .0321 | 2,120 | 1 | | 17 | 1 | .0318 | 2,120 | 1 | | 18 | 1 | .0314 | 2,040 | 1 | | 19 | 1 | .0516 | 2 ,77 5 | 1
1
1 | | 20 | 1 | .0517 | 2,215 | 1 | | 21 | 1 | .0515 | 2,760 | 1 | | 22 | 1 | .0188 | 850 | 1 | | 23 | 1 | .0188 | 864 | 1 | | 24 | 1 | .0189 | 815 | 1 | | 25 | 1 | .0189 | 800 | 30 | | 26 | 1 | .0187 | 800 | 51 | | 27 | 1 | .0189 | 760 | 260 | | 28 | 1 | .0189 | 760 | 448 | | 29 | | .0184 | 7 15 | 331 | | 30 | 1 | .0186 | 715 | 689 | | 31 | c ₉ | .0190 | 2,930 | 1 | | 32 | 9 | .0188 | 2,900 | 1 | | 33
34 | 9 | .0182 | 2,770 | 4,803 | | 34 | 9 | .0182 | 2,700 | 3,548 | | 35 | 9999 | .0187 | 2,700 | 4,154 | | 36 | 9 | .0185 | 2,700 | 896 | $^{\rm a}$ Ultimate stress in compression is crippling stress for cylindrical test specimen, 3/4-inch diameter by 3-inch length, double-wrapped 0.0107 sheet, with four lines of spotwelds equally spaced around the circumference. bSpotweld in single lap joint at center of tensile specimen. CNine spotwelds in lap joint are in three rows of three each. TABLE III.- EXPERIMENTAL DEFLECTION COEFFICIENTS FOR CONCENTRATED LOAD SYMMETRICALLY APPLIED TO MODEL AT ROOM TEMPERATURE
Location designated MB is main beam; LE is leading edge | Deflect | ion at - | | | For 1, | 000-1ъ 1 | oad appl | ied at s | tation a | nd locat | ion - | | | |---------|----------|--------|--------|--------|----------|----------|----------|----------|----------|--------|--------|--------| | Station | Location | 47 MDB | 72 LE | 96 MB | 120 MB | 120 LE | 144 MB | 144 LE | 168 мв | 168 le | 192 MB | 192 LE | | 47 | МВ | 0.4600 | 0.3343 | 0.2280 | 0.1458 | 0.1454 | 0.0823 | 0.0826 | 0.0384 | 0.0393 | 0.0100 | 0.0092 | | 72 | LE | . 3260 | .2580 | .1803 | .1200 | .1210 | .0710 | .0711 | .0333 | .0339 | .0082 | .0081 | | 96 | МВ | .2200 | .1867 | | .1033 | .1048 | .0634 | .0640 | .0303 | .0315 | .0072 | .0087 | | 96 | LE | .2140 | .1777 | .1429 | .0997 | .1022 | .0612 | .0616 | .0298 | .0302 | .0071 | .0070 | | 120 | мв | .1400 | .1200 | .1000 | | .0840 | .0545 | .0550 | .0273 | .0277 | .0059 | .0072 | | 120 | LE | .1360 | .1200 | .0995 | .0814 | | .0538 | .0561 | .0291 | .0272 | .0058 | .0070 | | 144 | MB | .0787 | .0727 | .0596 | .0516 | .0538 | | .0440 | .0237 | .0244 | .0047 | .0068 | | 144 | LE | .0780 | .0662 | .0580 | .0506 | .0528 | .0405 | | .0223 | .0272 | .0044 | .0056 | | 168 | MB | .0378 | .0347 | .0305 | .0276 | .0283 | .0239 | .0242 | | .0182 | .0035 | .0058 | | 168 | LE | .0368 | .0328 | .0306 | .0274 | .0278 | .0240 | .0242 | .0156 | | .0032 | .0123 | | 192 | МВ | .0112 | .0102 | .0083 | .0071 | .0067 | . 0056 | .0058 | . 0047 | .0040 | | | | 192 | LE | .0094 | .0085 | .0083 | .0078 | .0084 | .0066 | .0064 | .0048 | .0120 | .0002 | | TABLE IV.- EXPERIMENTAL DEFLECTIONS FOR DISTRIBUTED LOAD SYMMETRICALLY APPLIED TO MODEL AT ROOM TEMPERATURE Location designated MB is main beam; LE is leading edge | Station | Location | Distribution of applied | Deflection | ns for applied l | oads of - | |---------|----------|-------------------------|------------|------------------|-----------| | Beacton | Location | load | 3,492 lb | 7,036 1ъ | 9,986 1ъ | | 47 | MB | 0.1355 | 0.546 | 1.090 | 1.540 | | 72 | LE | .0576 | .448 | .896 | 1.260 | | 96 | MB | .0378 | . 334 | .668 | .938 | | 96 | LE | .0859 | .335 | .670 | .941 | | 120 | МВ | .0657 | .240 | .481 | .678 | | 120 | LE | .0910 | .251 | .503 | .708 | | 144 | МВ | .0918 | .158 | . 316 | .423 | | 144 | LE | .0967 | .171 | . 341 | .480 | | 168 | МВ | .1151 | .086 | .163 | (a) | | 168 | LE | .1041 | .109 | .216 | . 304 | | 192 | мв | .0671 | .023 | .047 | (a) | | 192 | LE | .0517 | .037 | .074 | (a) | $^{^{\}mbox{\scriptsize B}}\mbox{\it Deflection}$ exceeded capability of deflectometer. TABLE V.- EXPERIMENTAL STRAINS FOR CONCENTRATED LOADS SYMMETRICALLY APPLIED TO MODEL AT ROOM TEMPERATURE [Locations designated MB are on main beams; IE are on leading edges. Eleven gages were inoperative: gages 51, 52, 58, 63, 65, 73 to 75, 108, 115, and 130. Fourteen gages did not indicate a response greater than the recorder error: gages 54, 55, 56, 121, 122, 124 to 127, 129, 131 to 134] | | | Strai | n, μin./in., | for 1,000-po | ound load app | plied at star | tion and loca | ation - | | |---|--|--|---|---|--|--|---|--|------------------------------------| | Gage | 47 MB | 72 LE | 96 MB | 120 LE | 120 MB | 144 LE | 144 MB | 168 LE | 168 MB | | 53
57
59
60
61
62
64
66
67
68 | -38
228
-25
-263
250
198
-260
236
-236
-250 | -61
137
-12
-162
182
135
-204
200
-194
-194 | -84
34

-40
106
65
-170
150
-160
-148 | -106
3

6
56
24
-62
133
-120
-92 | -106

5
60
23
-62
134
-120 | -125

-5

8
28
100
-83
-44 | -128

3
-5
9
14
102
-80
-41 | -125

-2

63
-32
18 | -148

72
-39
13 | | 69
70
71
72
76
77
78
79
80
81 | 239
239
242
242
-215
-284
-256
-194
-143
-205 | 182
178
184
185
-172
-212
-192
-152
-112
-156 | 112
102
128
117
-138
-152
-132
-114
-86
-113 | 71
62
79
81
-100
-84
-74
-67
-53
-59 | 73
63
81
82
-97
-81
-71
-70
-56
-66 | 24
12
31
33
-47
-3

-39
-32
-37 | 20
6
30
30
-55
-10
-6
-34
-28 |

15
13
-10
-9
-10 |

5
4
3 | | 82
83
84
85
86
87
88
89
90 | -214

-4
-3
1
2
 | -162

-3
-2
 | -117

 | -61

-3

-3 | -65

-3

 | -33
2

-28
17
7

-6 | -23 | -14
17
15
-92
56
38
31
-70
-46 | -5

15
9

-2
2 | | 92
93
94
95
96
97
98
99
100 | 254
262
244
242
199
210 | 206
218
189
186
132
(a) | 148
158
132
106
51
(a) | -3
-6
-10
112
122
75
80

(a) | 114
122
77
82
3
(a) | 27
-30
-57
66
72
32
-46
(a)
36 | -3
5
10
68
76
29
30
-58
-38 | 9
12
-23
9
10
6

-13
-13 | 2 2 | | 102
103
104
105
106
107
109
110
111 | -189
-278
-254
-170
-184
-238

-4
-2 | -128
-210
-204
-118
-130
-192
 | -70
-169
-158
-68
-88
-149
 | -16
-119
-112
-13
-29
-97
 | -15
-118
-108
-16
-31
-101
 | 38
-50
-48
20
8
-65

-26 | 45
-60
-56
32
19
-62
 | 17
9
9

-7
-21
10
13
-84 | 3
-4
-4
-4

3
16 | | 113
114
116
117
118
119
120
123
128 | -3
 | | |

-4
-5
-14
-9 | 2 | 9

14
26
-76
-53
8
5 | 2 13 10 | 24

6
-32
-22 | 5 | ^aGage became unstable during tests. TABLE VI.- EXPERIMENTAL STRAINS FOR DISTRIBUTED LOADS SYMMETRICALLY APPLIED TO MODEL AT ROOM TEMPERATURE Thirteen gages were inoperative: gages 51, 52, 58, 63 to 65, 73 to 75, 100, 108, 115, and 130. Sixteen gages did not indicate a response greater than the recorder error: gages 54 to 56, 121 to 129, and 131 to 134 | | Strain, µin., | /in., for app | lied load of - | Gage | Strain, µin. | /in., for app | lied load of | |----------|---------------|---------------|---------------------------|------|--------------|------------------|--------------| | age | 3,492 lb | 7,036 1ъ | 9,986 1ъ | Gage | 3,492 1ъ | 7,036 1ъ | 9,986 1ъ | | 53 | -325 | -655 | -930 | 93 | -17 | -33 | -47 | | 57 | 155 | 311 | 443 | 94 | -28 | - 57 | -80 | | 59 | -20 | -40 | - 5 ¹ 4 | 95 | 341 | 678 | 961 | | 60 | -180 | - 364 | - 516 | 96 | 364 | 729 | 1,030 | | 61 | 242 | 485 | 687 | 97 | 263 | 549 | 781 | | 62 | 180 | 360 | 508 | 98 | 276 | 558 | 794 | | 66 | 470 | 972 | 1,422 | 99 | 107 | 218 | 314 | | 67 | -379 | -755 | -1,061 | 101 | -143 | -285 | -401 | | 68 | -291 | - 589 | - 843 | 102 | -118 | -233 | -326 | | 69 | 259 | 520 | 736 | 103 | - 360 | -729 | -1,035 | | 70 | 243 | 487 | 691 | 104 | -326 | - 653 | -926 | | 71 | 279 | 560 | 795 | 105 | -128 | -251 | - 346 | | 72 | 279 | 560 | 796 | 106 | -158 | -314 | -440 | | 76 | -293 | - 583 | -818 | 107 | - 329 | -663 | -944 | | 77 | -294 | - 595 | -846 | 109 | 5
3 | 9 | 12 | | 78 | -253 | -505 | -715 | 110 | 3 | | 9 | | 79 | -245 | -482 | -674 | 111 | -46 | -90 | -128 | | 80 | -183 | -361 | -501 | 112 | 9 | ~142 | -159 | | 81 | -243 | -486 | - 689 | 113 | l . | 12 | 17 | | 82 | -245 | -494 | -702 | 114 | 11 | 22 | 32 | | 83 | 8 | 16 | 22 | 116 | -16 | -30 | -40 | | 84 | 3 | 7 | 10 | 117 | 3 | 7 | 11 | | 85 | - 51 | -103 | -148 | 118 | 8 | 17 | 23 | | 86 | -32 | -63 | -90 | 119 | -37 | -76 | -108 | | 87 | 19 | 37 | 52 | 120 | -26 | - 51 | -71 | | 88 | 13 | 26 | 40 | 1 | | · | L | | 89 | -28 | -57 | -81 | | | | | | 90 | -20 | -39 | -55 | | | | | | 91
92 | 4
9 | 10
20 | 15
28 | 1 | | | | TABLE VII. - TORSION TEST AT ROOM TEMPERATURE [16,650 in-lb torque applied at station 96] | | | Deflect. | ion, in. | | Angle of tw | ist, radians | |---------|-----------------------|--------------------|-------------------|----------------------|--------------------------|--------------------------| | Station | Right
leading edge | Right
main beam | Left
main beam | Left
leading edge | Leading edge | Main beam | | 47 | 0.007 | | | -0.009 | 2,400 × 10 ⁻⁶ | | | 72 | .022 | | | 025 | 2,315 | | | 96 | .054 | 0.020 | -0.022 | 045 | (a) | 2,415 × 10 ⁻⁶ | | 120 | .032 | .0 16 | 018 | 034 | 1,405 | 1,557 | | 144 | .032 | .013 | 014 | 033 | 1,110 | 1,015 | | 168 | .035 | .009 | 009 | 035 | 985 | 640 | | 192 | .037 | .002 | 002 | 032 | 815 | 130 | $^{^{\}rm a}{\rm Not}$ computed, deflections influenced by application of concentrated loads to produce torque. TABLE VIII.- MEASURED VALUES OF LOAD, STRAIN, TEMPERATURE, AND DEFLECTION FOR $1,600^{\circ}$ F TEST Strain-gage (SG) readings are corrected for temperature, microinches/inch. Thermocouple (TC) readings are temperatures, °F. Deflectometer (Defl) readings are in inches. (a) First heating cycle: 3 loads, 22 strain gages, 38 strain-gage thermocouples, 6 skin-corrugation-detail thermocouples, 8 longitudinal-spar-web thermocouples | Time, | Total | | Right | | St | rain | , μ1
| n./1n | ., at | - | | | Te | zper | atur | e, ^O | F, a | t - | | |--|---|---|---|--|---|--|--|--|--|--|---|--|--|---|--|--|--|---|---| | sec | load,
lb | load,
lb | load,
lb | SG
101 | SG
102 | SG
103 | SG
104 | SG
105 | SG
106 | SG
107 | SG
111 | TC
101 | TC
102 | TC
103 | TC
104 | TC
105 | TC
106 | TC
107 | TC
111 | | 0
30
60
90
121
151
181
261
322
382 | 0
-61
-91
-76
-204
-158
-218
-121
-89
33 | 0
-22
-30
-24
-87
-63
-95
-48
-31 | 0
-39
-61
-52
-117
-95
-123
-73
-58 | -1
-3
-9
-17
-20
-46
-55
-52
3 | | 1
3
-13
-15
-37
-19
34
112
212 | -6
-4
-7
-11
23
43
106
280
407
516 | -5
-5
-22
-36
-83
-166
-394
-501 | 5
13
19
24
36
24
-38
-261
-401
-490 | 307
416 | -3
-3
-3
2
2
3
13
36
83
90
84 | 82
83
87
96
118
152
272
371
466 | 436 | 81
82
83
88
99
120
147
240
319
400 | 132
167
279
369 | 133
184
354
479 | 82
84
90
108
149
214
414
553
665 | 80
80
81
85
93
113
143
250
344
442 | 83
84
88
99
118
144
220
279
334 | | 401
416
431
492
552
612
642
672
703
733 | 56
322
783
889
861
841
853
857
842
861 | 40
174
404
437
423
415
421
424
416
426 | 16
148
379
452
438
426
432
433
426
435 | 108
118
118
187
236
283
292
319
340
361 | -27
-30
-38
-19
9
13
12
17
20
28 | 250
253
226
307
391
454
478
500
516
525 | 544
538
505
570
625
673
693
721
736
752 | -552
-563
-573
-545
-511
-467
-436
-402
-378
-347 | -530
-556
-561
-524 | | 82
76
76
84
78
75
76
71
61 | 494
516
536
606
660
703
721
737
752
764 | 564
586
605
674
787
782
796
806
817 | 460
523
576 | 498
516 | 637
657
724
774
811
826
840
852 | 693
714
734
801
847
883
897
907
916
925 | 494
517
595
658
708
727
745 | 350
361
372
408
439
465
474
483
491 | | 793
823
853
884
914
974
1035
1065
1096 | 865
538
-43
-22
59
84
47
60
254
44 | 431
262
-25
21
34
40
23
31
127 | 434
276
-18
1
25
44
24
29
127
25 | 400
439
481
492
509
548
584
599
601
614 | | 618
699
715
724
745
778
790
758 | 780
825
903
910
922
949
974
985
954
932 | -261
-195
-120
-61
8
(a) | | 354
391
467
480
492
525
555
589
596
560 | 57
58
70
64
65
66
61
56
57 | 790
795
799
804
810
817
820
816 | 830
835
839
843
846
850
854
855
851
818 | 701
714
722
727
733
741
744
737
710 | 762
767
771
771
767 | 896
902
908
909
898 | 948
952
956
960
961
948 | 839 | 513
517
519
520
524
529
530
528 | | 1187
1247
1308
1369
1430
1491 | 113
100
40
93
16
74 | 56
54
22
49
11
41 | 57
46
18
44
5
33 | 646
646
614
572
525
494 | 509
524
527
521
510
501 | 490 | 770
700
624
574 | | | 481
409
375
348
347
330 | 55
52
52
46
41
35 | 700
609
531
466
413
367 | 423 | 553
482 | 660
577
503
441
389
347 | 657
576
506
449 | 520
460 | 737
656
580
512
456
408 | 378
328
286
254 | aStrain gage exceeded 900° F. (a) First heating cycle: 3 loads, 22 strain gages, 38 strain-gage thermocouples, 6 skin-corrugation-detail thermocouples, 8 longitudinal-spar-web thermocouples - Continued | Time, | | | | St | rain, p | in./i | n., at | - | | | | | T | empe: | ratur | e, ^o F | , at | - | | | |--|---|--|--|--|--|--|--|---|---|--|--|--|--|--|--|---|--|--|--|--| | sec | SG
112 | SG
116 | SG
119 | SG
120 | SG
129 | SG
131 | SG
132 | SG
122 | SG
123 | SG
124 | TC
112 | TC
116 | TC
119 | TC
120 | TC
129 | TC
131 | TC
132 | TC
122 | TC
123 | 동경 | | 0
30
60
90
121
151
181
261
322
382 | -7
-13
-10
-6
5
34
60
97
114 | 1
11
27
35
53
68
78
153
187
197 | -5
-9
-7
-4
0
7
33
86
114
133 | -7
-8
-4
-2
7
42
76
142
178
203 | -35
-170
-613
-2124
-3554
(b) | -25
-248
-703
-1897
-3818
(b) | 3 ⁴
-137
-959
-2248
(b) | -1
-4
-20
-29
-77
-235
-499
-633
-733 | -1491 | -285 | 207
256 | 84
87
96
118
167
235
418
531 | 82
84
89
103
135
180
314
406 | 129
167
290
382 | 1288
1315 | 141
390
698
1010
1192
1216
1252
1263 | 1406
1412
1432 | 379
566
789
836 | 154
247
345
539
631 | 83
88
99
121
170
233
387
467 | | 401
416
431
492
552
612
642
672
703
733 | 117
113
108
125
120
127
135
135
137 | 198
199
224
462
820
924
370
381 | 145
150
163
167 | 214
214
222
232
241
251
276
306 | | | | -548
-449
-370
-331
-271 | -1870
-1938
-2046
-2228
-2262
-2304
-2345 | -454
-465
-528
-572
-606
-628 | 323
332
358
381
404
411
417
423 | 655
668
711
741
762
769
775
780 | 522
538
593
637
669
682
689
694 | 500
516
567
609
639
652
658
664 | 1342
1344
1344
1349
1354
1356
1357 | 1273
1274
1278
1281
1284 | 1436
1434
1434
1436
1446
1443 | 875
879
888
898
905
908
912
915 | 720
731
760
784
803
812
821
828 | 550
560
590
614
634
642
652
661 | | 793
823
853
884
914
974
1035
1065
1096
1126 | 151
158
159
171
173
195
206
167 | 459
470
491
511
551
592
616
605 | 268
260
306
302
313 | 356
373
384
377
406
416
428
425 | | | | -121
-109 | -2540
-2544
-2565
-2618
-2622
-2606
-2742 | -666
-695
-685
-695
-710
-693
-686
-649 | 438
441
443
443
447
454
456 | 795
797
800
801
806
809 | 716
719
722
724
726
730
731
726 | 683
685
686
689
691
694
696 | 1359
1359
1362
1359
1361
1366
1304 | 1290
1291
1290
1291
1292 | 1441
1441
1441
1431
1441
1442
1442 | 922
924
924
923
925
927
914
840 | 845
848
851
854
857
862
857
824 | 679
683
685
687
690
693
692 | | 1187
1247
1308
1369
1430
1491 | 56
28 | | 358
341
312
300 | 396
362
343
305
300
284 | | | | 154
98
80
26
-7
-24 | | -246
-188
-133 | 338
296
258
232 | 526
449
388
338 |
588
492
415
354
309
272 | 413
357
313 | 597
455
366
303
258
225 | 595
448
358
298
256
225 | 262
217
188 | 466
391
337
294 | 612
500
417
353
304
265 | 432
363
310
267 | bSignal went off scale on recorder. (a) First heating cycle: 3 loads, 22 strain gages, 38 strain-gage thermocouples, 6 skin-corrugation-detail thermocouples, 8 longitudinal-spar-web thermocouples - Continued | M4 ma | Strai | n, µ11 | ı./in. | , at - | | | | | | Te | empere | ture | °F, | at - | | | | | | |--|--|---|--|--|---|---|---|--|--|--|--|--|--|--|--|--|--|--|--| | Time,
sec | SG
125 | SG
126 | SG
127 | 8G
1.28 | TC
125 | тс
126 | TC
127 | TC
128 | TC
96 | TC
95 | TC
98 | 6 3 | TC
109 | TC
11.0 | 113
113 | 124
114 | 1C
117 | TC
118 | TC
133 | | 0
30
60
90
121
151
181
261
322
382 | -5
-4
-5
-27
-81
-173
-240
-322
-285
-327 | 3
-10
-22
-53
-116
-205
-507
-724
-630 | 20
32
20
19
0
-164
-288
-374 | -2
-4
9
2
-133
-391
-846
-978
-1098 | 83
84
91
110
155
235
312
472
542
593 | 79
81
87
101
133
195
261
414
493
536 | 134
201
283
456
544 | 428 | 83
84
89
113
177
313
467
806
977
1083 | 79
79
82
98
140
241
371
681
856
978 | 83
83
85
95
125
199
312
645
850
985 | 83
85
93
116
170
251
527
723
864 | 82
87
121
192
314
504
698
985
1055
1087 | 81
86
119
190
314
504
697
972
1037
1065 | | 83
102
157
249
395
618
843
1096
1144
1171 | | 644
942
1022 | 87
407
724
1027
1355
1466
1467
1478
1476
1479 | | 401
416
431
492
552
612
642
672
703
733 | -255
-193
-232
-336
-375
-428
-379
-286
-164
-233 | -860
-898
-896
-910
-856
-900
-891
-962
-1062 | -450
-506
-478
-475
-484
-500 | -1137
-1241
-1252
-1429
-1534
-1541
-1508
-1487
-1467
-1418 | | 557
564
589
604
618
621 | 717
723
731 | 798
805
841
865
882
887
895
901 | 1136
1177
1202
1216
1222
1225
1230 | 1025
1042
1093
1126
1146
1154
1159 | 1033
1049
1096
1125
1142
1148 | 920
940
998
1031
1051
1058
1065 | 1098
1102
1115
1123
1127
1129
1131
1133 | 1097
1098
1099
1101 | 1161
1164
1173
1179
1186
1188
1191 | 1179
1182
1189
1193
1198
1199
1202 | 1067
1074
1091
1105
1114
1118
1122
1126 | 1071
1076
1091
1101
1109
1112
1115 | 1479
1477
1476
1476
1479
1486
1486 | | 793
823
853
884
914
974
1035
1065
1096 | -211
-184
-225
-189
-192
-240
-346
-229
-229
-87 | -1117
-1077
-1152
-1185
-1144
-1159
-1008
-1084
-1055
-854 | -511
-509
-504
-520
-514
-581
-576
-570 | -1371
-1328
-1295
-1268
-1264
-1227
-1159
-1127
-1069
-982 | 693
693
691
695 | 648
647
639
644
632 | 748
751
753
754
760
762
759 | 917
919
921
923
929
929
924
882 | 1237
1238
1239
1239
1243 | 1173
1175
1177
1178
1181
1183
1184
1177 | 1169
1170
1171
1174
1176
1177 | 1083
1085
1087
1088
1091
1094
1094 | 1137
1137
1138
1141
1142
1142
1142 | 110 ⁴
110 ⁴
110 ³
110 ⁴
1106
1107 | 1202
1203
1204
1205
1207
1208 | 1212
1213
1213
1215
1218
1217
1213
1169 | 1133
1135
1135
1136
1139
1141
1142
1128 | 1124
1125
1125
1126
1128
1129
1129
1114 | 1487
1487
1489 | | 1187
1247
1308
1369
1430
1491 | 94
210
196
196
161
172 | -626
-374
-253
-168
-126
-90 | -281
-275
-215 | -616
-507
-497
-467
-445
-453 | 461
358
292
243
212
185 | 358
292
243
209 | 460 | 496
413
350
297 | 1003
869
766
683
615
557 | 972
845
746
665
599
542 | 987
858
756
673
606
548 | 920
804
708
631
567
513 | 796
630
514
428
364
315 | 770
608
492
409
346
298 | 799
626
507
421
357
307 | 780
609
493
410
348
301 | 830
670
556
470
405
354 | 815
658
544
458
393
342 | 511
358
278
228
195
173 | TABLE VIII.- MEASURED VALUES OF LOAD, STRAIN, TEMPERATURE, AND DEFLECTION FOR 1,600° F TEST - Continued (a) First heating cycle: 3 loads, 22 strain gages, 38 strain-gage thermocouples, 6 skin-corrugation-detail thermocouples, 8 longitudinal-spar-web thermocouples - Concluded | | | | | | | | | Te | emper | ature | °F, | at - | | | | | | | | |--|---|--|--|---|--|--|--|--|--|---|---|---|--|---|---|--|---|---|--| | Time,
sec | TC
134 | TC
121 | TC
130 | TC
108 | TC
115 | TC
135 | TC
136 | TC
137 | TC
138 | TC
139 | TC
140 | IC
197 | тс
198 | TC
199 | TC
200 | TC
201 | TC
279 | TC
280 | TC
281 | | 0
30
60
90
121
151
181
261
322
382 | 77
142
403
717
1035
1217
1244
1281
1293
1303 | 908
958 | 80
361
616
897
1207
1449
1470
1474
1487 | 80
81
86
97
124
162
298
413
526 | 82
82
85
93
113
162
234
441
572
670 | 136
207
297 | 126
183
259
437
527 | 83
84
88
99
119
167
232
395
480
540 | 80
149
358
648
967
1244
1278
1306
1323 | 82
215
448
725
1027
1289
1319
1341
1357 | 80
319
570
849
1150
1393
1416
1426
1439
1446 | 78
79
85
108
169
308
475
797
894
952 | 78
79
87
115
189
355
548
635
908
951 | 78
79
85
109
171
310
473
759
844
894 | 78
79
84
102
148
253
387
655
755
812 | 78
79
84
98
135
216
315
534
641
714 | 77
78
85
108
169
314
489
789
879
936 | 77
78
86
109
173
319
498
785
869
923 | 78
79
85
105
158
279
425
691
790
856 | | 401
416
431
492
552
612
642
672
703
733 | 1314
1317
1322
1322
1323 | 1014
1025
1034
1036
1041 | 1491
1488
1486
1486
1489
1494
1491
1494
1496 | 814
828
841 | 713 | 674
685
717 | 609
620
631
662
689
711
720
731
740
747 | 567
577
608 | 1336
1335
1335
1337
1343
1349
1351
1353
1353 | | 1452 | 1037
1042
1046
1050 | 961
968
974
996
1009
1019
1023
1027
1032
1034 | 912
920
943
959
970
975
979
984 | 843
868
888
902
907
914 | 847
856
864 |
950
961
970
1002
1027
1048
1056
1064
1069 | 1045 | 873
886
897
936
967
993
1003
1012
1020
1026 | | 793
823
853
884
914
974
1035
1065
1096 | 1326
1325
1326
1326
1328
1329 | 1048
1051
1052
1053
1053
1056
1059
1040
945
822 | 1498
1499
1500
1495
1497
1504
1394
1072 | 873
878
882
886
892
896
895 | 870
873 | 806
810
813
816
819
822
827
826
799
735 | | 699
702
705 | 1356
1355
1356
1358
1355
1363
1302
1079
868 | 1388
1388 | 1458
1458
1460
1457
1459
1465 | 1058
1059 | 1037
1039
1040
1041
1043
1045
1047
1042
997
885 | | 932
933
935
936
939
942 | 882
883
886 | 1086
1089 | 1072
1076
1081 | 1041
1044 | | 1187
1247
1308
1369
1430
1491 | 634
483
392
324
276
241 | 632
511
427
365
318
281 | 456
327
259
213
184
163 | 676
594
522
462 | | 602
493
412
349
300
262 | 474
397
337
290 | 534
443
371
316
273
239 | 594
451
362
300
255
223 | 554
414
331
272
232
203 | 485
353
281
230
198
175 | 756
634
543
473
417
372 | 700
574
483
414
361
319 | 549
458 | 648
526
438
372
324
285 | 646
536
453
391
344
305 | 803
694
612
546
491
445 | 776
665
583
516
461
416 | 787
682
602
533
477
432 | (b) Second heating cycle: 3 loads, 19 deflections, 66 top skin thermocouples, 8 transverse frame web thermocouples, 3 deflectometer wire thermocouples, 1 air thermocouple | Γ. | Ī | 1 | ·- I | [· = · | | | - . | | | |
Defle | tion. | in., s | | | | | | | | |--------------|--------------|--------------|----------------|--------------|----------------|--------------|----------------|----------------|--------------|---------------|----------------|----------------|----------------|--------------|------------|------------|--------------|--------------|--------------|------------| | Time, | Total | | Right
load, | Temperature, | | r | r : | J | [] | r · · · · · | | | r i | | _ | | | | | | | вес | 1b | 1b | 1b | at TC 132 | Defl
l | Defl
2 | Defl
5 | Defl
8 | Defl
9 | Defl
12 | Defl
13 | Defl
14 | Defl
15 | Defl
16 | Defl
17 | Defl
18 | Defl
19 | Def1
20 | Defl
21 | Defl
22 | | 0 | -2 | -1 | -1 | 77 | -0.001 | 0.001 | 0 | 0 | 0.001 | 0.001 | 0.001 | 0 | 0 | 0.001 | 0 | 0 | 0 | 0.001 | 0 | 0 | | 30 | -54 | -20 | -34 | 400 | 002 | 002 | .005 | .003 | .010 | .008 | .012 | 001 | 001 | .011 | .015 | | 0 | .013 | .017 | .001 | | 60
90 | -75
-58 | -32
-22 | -43
-36 | 706
977 | .020 | .018 | .011 | .013 | .016
.041 | .022
.056 | .021 | 003 | 002 | .023 | .030 | 003 | 002 | .029 | .037 | .001 | | 121 | -121 | -54 | -67 | 1280 | .231 | .241 | .107 | .109 | .090 | .119 | .081 | .013 | .018 | .087 | | 0 | .003 | .097 | .102 | .002 | | 151 | -108 | -47 | -61 | 1389 | .578 | .595 | .253 | .253 | .186 | 244 | .142 | .044 | .051 | .151 | .144 | .010 | .014 | 148 | .140 | .004 | | 181 | -95 | -4i | -54 | 1393 | 1.011 | 1.039 | .427 | .424 | .294 | . 383 | .199 | .084 | .094 | .209 | .176 | .022 | .026 | .183 | .149 | .006 | | 241 | -37 | -13 | -24 | 1410 | 1.866 | 1.915 | .776 | .764 | .500 | .648 | .292 | .171 | .187 | . 308 | .210 | .052 | .057 | .226 | .150 | .011 | | 302
332 | -53
-90 | -21
-38 | -32
-52 | 1419
1422 | 2.482 | | 1.037 | 1.017 | .643
.689 | .835
.893 | .350
.366 | .243
.267 | .264
.290 | .368
.384 | .217 | .078 | .081 | .239
.239 | .150
.150 | .014 | | 352 | -90 | -50 | -52 | 1422 | 2.000 | 2. (41 | 1.144 | 1.099 | .009 | .095 | | | .290 | . 704 | • 21 (| .009 | .090 | •209 | .150 | .016 | | 362 | -55 | -21 | - 34 | 1426 | 2.789 | | | | .725 | .938 | .380 | .288 | .312 | . 396 | .219 | .098 | .098 | .240 | .150 | .018 | | 393
423 | -65
-66 | -26
-27 | -39
-39 | 1430
1430 | 2.831 | 2.912 | | 1.185 | .742
.750 | •959
•968 | . 387
. 389 | .302 | . 325
. 335 | .402
.403 | .218 | .106 | .104 | .238 | .149 | .021 | | 484 | ~71 | -66 | -15 | 1430 | | 2.803 | | | 740 | .957 | .385 | .317 | .342 | .400 | .212 | .119 | .115 | .233 | .148 | .027 | | 544 | -98 | -68 | -30 | 1430 | 2.580 | | 1.159 | 1.133 | .718 | .927 | • 377 | .318 | .340 | . 389 | .206 | .123 | .118 | .227 | .147 | .030 | | 605 | -114 | -76 | -38 | 1430 | | 2.490 | | 1.086 | .695 | .896 | . 367 | . 315 | . 338 | • 379 | .203 | .125 | .120 | .224 | .146 | .031 | | 620 | 479 | 242 | 237
1064 | 1428
1431 | 2.491 | | | 1.131 | •735 | .945
1.098 | . 396
. 478 | . 340 | .365
.445 | .405
.485 | .224 | .142 | .133 | .240
.292 | .149 | .036 | | 635
650 | 2157
3609 | 1093
1830 | 1779 | 1430 | 2.725 | | | 1.283 | .855 | 1.229 | .470 | . 385 | .514 | .548 | .324 | .102 | .173 | .336 | .151
.151 | .059 | | 666 | 4469 | 2267 | 2202 | 1428 | 3.041 | | | | | 1.287 | .560 | .386 | .554 | .578 | 352 | .198 | .173 | .362 | .151 | .066 | | 696 | 5740 | 2915 | 2825 | 1425 | 3.199 | 3.275 | (ъ) | (b) | .987 | 1.304 | .568 | . 387 | .614 | .603 | .392 | .199 | .173 | . 398 | .151 | .075 | | 726 | 6365 | 3231 | 3134 | 1425 | 3.263 | | ` | ì i | | 1.304 | .569 | . 388 | 643 | .608 | • 399 | .199 | .173 | (b) | .151 | .080 | | 787 | 6453 | 3203 | 3250 | 1428 | 3.220 | | | | | 1.305 | .569 | . 388 | .649 | .649 | • 399 | .199 | .174 | | .152 | .080 | | 817 | 6472 | 3193
3180 | 3279
3274 | 1429
1426 | 3.203
3.179 | | J. l | | | 1.306 | .569
.569 | . 388
. 388 | .651
.650 | .610 | · 399 | .199 | .174 | ↓ | .152
.152 | .081 | | 863 | 2533 | 1250 | 1283 | 1427 | 2.570 | | 1.291 | 1.254 | | 1.104 | .494 | .385 | .469 | .498 | .290 | .192 | .172 | .310 | .151 | .056 | | 878 | 1449 | 709 | 740 | 1429 | 2.382 | 2.442 | 1.174 | 1.143 | .774 | .993 | .438 | .375 | .415 | .444 | .255 | .175 | .164 | .273 | 150 | .048 | | 908 | 249 | 112 | 137 | 1434 | 2.159 | | | 1.016 | .672 | .867 | - 373 | . 330 | . 352 | . 380 | .213 | - 144 | .137 | .233 | -147 | -039 | | 969 | -152 | -87 | -65 | 1434
1438 | 2.061 | | .983 | .964 | .636 | .818 | . 350
. 349 | .311 | .330 | .356 | .197 | .132 | .125 | .218 | .144 | -037 | | 1030 | -175 | -96 | -79 | 1450 | 2.043 | 2.099 | -974 | •957 | .630 | .816 | • 249 | . 509 | . 328 | • 5555 | .196 | .132 | .126 | .217 | .143 | .036 | | 1076 | -102 | -64 | - 38 | 1143 | 1.985 | | .944 | .928 | -604 | 780 | . 322 | . 304 | . 324 | . 333 | .166 | .131 | .125 | .191 | 119 | .035 | | 1106 | -36 | -31 | -5
-6 | 901 | 1.789 | | .859 | .847 | -545 | .704 | .283 | .290 | .308 | .291
.248 | .133 | .126 | .121 | .156 | .085 | .032 | | 1137
1198 | -39
-83 | -33
-52 | -6
-31 | 670
430 | 1.550 | | .757
.601 | ·749
·594 | ·477 | .617 | .241
.186 | .267
.225 | .285 | .186 | .102 | .118 | .115 | .121 | .053 | .031 | | 1258 | -119 | -69 | -50 | 318 | | 1.004 | .505 | 499 | .316 | .401 | .152 | .193 | .202 | .151 | .045 | .084 | .082 | .056 | .007 | .020 | | 1319 | -142 | -82 | -60 | 256 | .850 | .875 | . կեկ | 844. | .277 | . 348 | .132 | .171 | .176 | .128 | .035 | .073 | .071 | . Օիե | 001 | .016 | | 1379 | -163 | -86 | -67 | 215 | .766 | .790 | .402 | - 395 | .249 | . 311 | .116 | .151 | .155 | .112 | .029 | .063 | .061 | .036 | 002 | .012 | | 1440
1501 | -163 | -92
-91 | -71
-71 | 187
168 | .706
.657 | .728
.679 | . 369
. 340 | . 361
. 334 | .227 | .282 | .105 | .135 | .139 | .100 | .025 | .054 | 053 | .030 | 003 | .010 | | 1802 | -162
-212 | -106 | -106 | 165 | .442 | .457 | .208 | .202 | .122 | .151 | .058 | .060 | .125 | .055 | .021 | .020 | .047
.019 | .026 | 004 | .007 | | L | | ا ` ا | J | l | | . ''] | | | | |] | | | | | | | | | | bSignal went off scale on recorder. TABLE VIII.- MEASURED VALUES OF LOAD, STRAIN, TEMPERATURE, AND DEFLECTION FOR 1,600° F TEST - Continued (b) Second heating cycle: 5 loads, 19 deflections, 66 top skin thermocouples, 8 transverse frame web thermocouples, 5 deflectometer wire thermocouples, 1 air thermocouple - Continued | Time, | | ction, | | | | | | | | Pempe | ratur | e, ^o F | , at | | - | | | | - | | |--|--|--|--|--|--|--|--|--|---|---|--|--|--|---|--|--|--|--|--|--| | sec | Defl
23 | Defl
24 | TC
1 | TC
2 | TC
3 | TC
4 | TC
5 |
TC
6 | TC
7 | TC
8 | 10
289 | TC
9 | TC
10 | TC
11 | TC
12 | TC
13 | TC
14 | TC
15 | TC
16 | TC
17 | | 0
30
60
90
121 | 0
.001
0
.001 | 0
.018
.042
.074
.118 | 77
240
549
843
1167 | 82
387
684
969
1273 | 102
395
651
918
1232 | 81
365
663
941
1267 | 76
425
750
1023
1322 | 76
365
650
908
1198 | 81
368
679
957
1282 | 84
346
631
930
1248 | 76
240
573
899
1227 | 78
206
442
689
1009 | 78
265
513
780
1097 | | 99
355
584
780
1052 | 86
342
578
810
1123 | | 77
330
564
805
1127 | 77
352
620
866
1148 | | | 151
181
241
302
332 | .005
.007
.012
.017
.019 | .130
.131
.131
.131
.131 | 1509 | 1507
1517
1511
1514
1513 | 1419
1427
1424
1414
1414 | 1427
1427 | 1423
1428 | 1309
1314
1317 | 1426 | 1488
1473
1467 | 1553
1551 | 1367
1418
1446
1453
1453 | 1397 | 1393
1415
1407
1411
1415 | 1323 | 1301
1318
1337
1361
1369 | 1408
1411 | 1328 | 1271
1279
1287 | 1326 | | 362
393
484
544
605
620
635
666 | .021
.022
.024
.027
.028
.029
.033
.044
.053 | .131
.131
.131
.131
.131
.131
.131
.131 | 1514
1518
1517
1518
1518
1520
1517 | | 1413
1419
1414
1414
1415
1416
1417 | 1426
1424
1424
1424
1424
1425
1425 | 1434
1431
1430
1428
1427
1424
1428
1429 | 1321
1317
1315
1314
1311
1309
1313 | 1425
1428
1429
1427
1427
1426
1426 | 1462
1461
1464
1466
1464
1462
1462
1461 | 1552
1549
1551
1553
1553
1555
1552
1554 | 1463
1467
1465
1467
1471
1469
1467 | 1400
1399
1397
1402
1402
1403
1402
1401 | 1422
1424
1423
1426
1424
1428
1430
1433 | 1336
1338
1349
1346
1349
1350
1352 | 1388
1402
1410
1412
1409
1415
1419 | 1448
1452
1465
1473
1473
1473
1475
1475 | 1346
1345
1346
1346
1354
1351
1350 | 1301
1305
1306
1307
1304 | 1346
1349
1349
1347
1350 | | 696
726
787
817
847
863
878
908
969
1030 | .067
.072
.073
.074
.075
.053
.046
.038
.034 | .131
.131
.131
.131
.131
.131
.131
.131 | 1514
1514
1514
1515
1514
1519
1521
1521
1518 | 1506
1509
1505
1508
1511
1511 | 1418
1419
1415
1417
1421
1423
1422
1422
1422 | 1427
1426
1429
1425
1427
1427
1429
1434
1437 | 1426
1425
1426
1428
1424
1425
1425
1431
1429 | 1310
1308
1308
1310
1307
1309
1309
1313
1312 | 1428
1429
1432
1428
1429
1431
1434
1437 | 1461
1462
1460
1461
1464
1465
1467
1470 | 1554
1553
1552
1553
1555
1555
1555
1557
1558 | 1461
1462
1462
1464
1465
1471
1473
1474
1475 | 1399
1400
1399
1403
1405
1406
1408
1411
1417 | 1436
1437
1436
1441
1443
1441
1431
1427 | 1354
1355
1353
1355
1358
1359
1358
1360
1363 | 1419
1424
1420
1420
1422
1422
1423
1431
1439 | 1477
1478
1480
1477
1478
1479
1484
1490
1497 | 1351
1353
1360
1360
1356
1354
1358
1355
1352 | 1322
1326
1328
1332
1325
1320
1313
1310
1308 | 1344
1344
1343
1347
1343
1346
1349
1355
1356 | | 1076
1106
1137
1198
1258
1319
1379
1440
1501
1802 | .034
.032
.029
.024
.019
.016
.012
.009
.007 | .131
.122
.084
.038
.017
.008
.003
0 | 1511
972
656
363
257
207
176
156
142
142 | 1351
1018
714
386
268
214
182
160
145
139 | 1188
875
638
384
273
216
182
159
144
144 | 1219
933
680
440
328
268
229
201
181
157 | 1117
869
635
397
291
235
201
177
159
143 | 1004
790
596
391
288
230
193
168
152
117 | 1203
918
671
447
341
281
237
207
186
155 | 1297
971
697
431
323
258
215
185
164
142 | 1532
1042
750
471
347
272
223
191
169
146 | 1469
948
643
366
268
220
187
165
150
164 | 1331
905
614
350
258
211
181
161
146
157 | 1258
956
698
427
314
250
209
181
162
164 | 1169
906
701
476
363
296
250
217
194
182 | 1247
995
779
555
431
350
294
253
224
216 | 1304
1049
823
591
452
365
365
262
229
219 | 1108
860
620
386
280
227
193
170
153
172 | 1062
860
662
444
332
266
223
193
172
162 | 1070
854
658
454
341
273
228
198
176
163 | (b) Second heating cycle: 3 loads, 19 deflections, 66 top skin thermocouples, 8 transverse frame web thermocouples, 3 deflectometer wire thermocouples, 1 air thermocouple - Continued | | | | | | | | | T | emper | ature | , o _F , | at - | | , | | | | | | | |--------------|--------------|--------------|-------------|----------|------------|------------|------------|------------|------------|------------|--------------------|-----------|------------|--|-----------|-----------|-------------|-----------|-----------|--| | Time,
вес | TC
18 | TC 19 | TC 20 | TC
21 | TC 22 | TC
23 | TC
24 | TC
25 | TC
26 | TC
27 | TC
28 | тс
29 | TC
30 | 100
31 | TC
32 | TC
33 | TC
34 | TC
35 | TC
36 | IC
37 | | 0 | 79 | 103 | 83 | 77 | 77 | 86 | 112 | 81 | 77 | 77 | 78 | 82
331 | 110
398 | 85
302 | 78
255 | 77
230 | 77
1414 | 77
326 | 77
402 | 77
279 | | 30 | 371 | 370 | 341 | 230 | 198 | 292 | 403
635 | 300 | 275 | 226
517 | 197
398 | 607 | 631 | 536 | 568 | 607 | 673 | 494 | 676 | 588 | | 60 | 683 | 601 | 620 | 517 | 433
682 | 482
714 | 881 | 552
817 | 511
762 | 814 | 620 | 892 | 880 | 778 | 872 | 924 | 909 | 708 | 954 | 906 | | 90 | 969 | 850 | 917
1249 | 815 | | | | | 1098 | 1140 | 914 | | 1 | | 1186 | | 1171 | | | 1224 | | 121 | | | 1516 | | 1310 | | | | | | | | | 1241 | | | 1355 | | 1477 | 1500 | | 151 | | 1344
1364 | 1543 | | 1360 | | | | 1266 | 1483 | 1259 | 1454 | | 1254 | | | 1371 | 1272 | | 1540 | | 181 | | | | | | | 1380 | | | 1506 | | 1443 | | 1256 | | | | 1332 | | 1532 | | 241 | | 1390
1403 | | | 1374 | | | | 1260 | | 1264 | | | 1260 | | 1457 | | 1385 | | 1549 | | 302 | | 1409 | | 1583 | | | 1388 | 1355 | 1268 | 1517 | | | | 1265 | | | | 1396 | | 1551 | | 332 | | | - 1 | | | | - | | | | | | | | , | | | - · · | | | | 362 | 1510 | ılıı5 | 1570 | 1586 | 1377 | 1324 | 1395 | 1352 | 1263 | 1520 | 1266 | 1439 | 1354 | 1263 | 1473 | 1453 | 1399 | 1404 | 1555 | 1553 | | | 1513 | וחפולד | 1581 | 15001 | 113/81 | 1329 | 14021 | 13501 | 1262 | 11525 | 11267 | 1459 | T 20 T | 1500 | 1400 | 1424 | 1396 | 1404 | 1555 | 1552 | | 393
423 | 1513 | 1)(2) | 1583 | 1502 | 1381 | 1331 | 1405 | 1349 | 1260 | 1529 | 1271 | 1441 | 1365 | 1267 | 1481 | 1454 | 1397 | 1409 | 1558 | 1552 | | 484 | | 1435 | | 1591 | 1384 | 1334 | 1421 | 1360 | 1268 | 1531 | 1275 | 1444 | 1377 | 1276 | 1479 | 1456 | 1400 | 1416 | 1566 | 1554 | | 544 | | 1435 | | 1591 | 1380 | 1342 | | | | | | | | | | | | 1412 | | 1564 | | 605 | | 1438 | | 1594 | 1392 | 1345 | | 1365 | | | 1282 | | | 1288 | 1496 | 1458 | 1391 | 1409 | 1560 | 1562 | | 620 | | | 1588 | | | 1345 | | | | 1538 | | | | 1290 | 1497 | 1455 | 1391 | 1409 | 1560 | 1565 | | 635 | | 1438 | | 1591 | 1391 | | | 1363 | | 1536 | 1285 | | | 1286 | 1486 | 1449 | 1387 | 1408 | 1558 | 1549 | | 650 | | 1439 | 1585 | | 1380 | 1344 | 1433 | | | | | | 1389 | 1286 | 1493 | 1453 | 1389 | 1413 | 1563 | 1554 | | 666 | | 1439 | | 1592 | | 1347 | 1433 | | | 1530 | | | 1389 | 1284 | 1494 | 1450 | 1385 | 1417 | 1564 | 1555 | | 000 | 1522 | 1479 | 1,004 | اعوردا | 1,009 | 1771 | 1177 | 2002 | | -//- | | | | | ' | - | | | - | | | 696 | 150 | 13130 | 1581 | 1588 | 1387 | 1 ኢዚ용 | 1437 | 1365 | 1271 | 1530 | 1288 | 1439 | 1389 | 1289 | 1490 | 1456 | 1399 | 1431 | 1574 | 1553 | | 726 | 1524 | 17:28 | 1582 | 1588 | 1384 | 1347 | 1437 | 1364 | 1269 | 1527 | 1285 | 1437 | 1389 | 1289 | 1487 | 1455 | 1400 | 1434 | 1574 | 1558 | | 787 | | | 1579 | | 1387 | 1345 | 1436 | 1369 | 1274 | 1528 | | 1436 | 1386 | 1290 | 1488 | 1460 | 1402 | 1438 | 1578 | 1557 | | 817 | | | 1582 | | | 1350 | 1438 | 1363 | 1268 | 1530 | | | | | 1490 | | 1406 | | 1582 | 1564 | | 847 | | | | | | | 1440 | | | | | 1444 | 1395 | 1293 | 1493 | 1464 | 1402 | 1437 | 1579 | 1563 | | 863 | | | 1587 | | | | 1441 | 1369 | 1276 | 1538 | | | | | 1499 | | | | 1581 | 1566 | | 878 | 1528 | | | 1598 | | 1350 | | | | 1544 | | | 1406 | 1305 | 1500 | 1456 | 1400 | 1424 | 1571 | 1566 | | | | 1447 | | 1599 | | 1350 | 1446 | 1381 | 1207 | 1547 | 1295 | | | | 1503 | | 1404 | | 1568 | 1560 | | 908 | | 1453 | | | | | 1450 | | | | | | | | | 1463 | 1401 | 1415 | 1569 | 1559 | | 969 | 1533
1534 | | | | | 1361 | | 1389 | 1311 | 1558 | | 1478 | 1414 | 1321 | 1516 | 1464 | 1399 | 1413 | 1566 | 1563 | | 1030 | 17,74 | ررجد | 100) | 1010 | 1 | 1701 | 1 | 1 | | -//- | -, | 1 | | _ | - | | | _ | 1 | 1 | | 1076 | 1311 | 1239 | 1450 | 1583 | 1391 | 1207 | 1229 | 1188 | 1116 | 1536 | 1274 | 1344 | 1195 | 1129 | 1478 | 1429 | 1227 | 1258 | 1435 | 1497 | | 1106 | 1047 | 958 | | منتنا | | 894 | 949 | 922 | 852 | | | 998 | 907 |
868 | 1058 | 1000 | 940 | 976 | 1119 | 1.080 | | 1137 | 813 | | 847 | 827 | 632 | 630 | 746 | 687 | 627 | 829 | | 719 | | 665 | 798 | 705 | 684 | 729 | 855 | 791 | | 1198 | 578 | 500 | 543 | 530 | 380 | 367 | 530 | 465 | 417 | | | ļ 449 | | 462 | 541 | 485 | 448 | 495 | 601 | 533 | | 1258 | 1 111 | 371 | 399 | 388 | 300 | 277 | 419 | 338 | 318 | 413 | | l 350 | 397 | 362 | 425 | 400 | 355 | 388 | 474 | 416 | | 1319 | 363 | 294 | 313 | 303 | 248 | 228 | 348 | 278 | 260 | | | | | | 350 | 341 | 297 | 318 | 392 | | | 1379 | 305 | 243 | 256 | 247 | 211 | 195 | 295 | 236 | 222 | | | 252 | | 257 | 297 | 299 | 255 | 268 | 335 | | | 1440 | 262 | | | | 1 | 174 | 255 | 206 | 195 | 237 | | | 257 | 224 | 256 | 270 | | 235 | 294 | 240 | | 1501 | 232 | 1 | | | | 159 | 229 | 185 | 175 | 208 | 1 ' | | | | 227 | 244 | | | 263 | 21 | | 1802 | 209 | 176 | | 169 | | | 242 | 188 | 174 | | | | | 189 | 197 | 204 | 201 | 212 | 245 | 21 | | 1002 | 1 209 | Line | 1 -01 | 103 | 1 -1- |] = 10 | | 1 -00 | 1 - ' | l" | 1 | L_:'_ | | ــــــــــــــــــــــــــــــــــــــ | ٠ | L | | L | | ــــــــــــــــــــــــــــــــــــــ | TABLE VIII.- MEASURED VALUES OF LOAD, STRAIN, TEMPERATURE, AND DEFLECTION FOR 1,600° F TEST - Continued (b) Second heating cycle: 3 loads, 19 deflections, 66 top skin thermocouples, 8 transverse frame web thermocouples, 3 deflectometer wire thermocouples, 1 air thermocouple - Continued | | | | | | | | | | Гепре | ratur | e, o _F | , at - | | | | | | • | | | |------------|--------------|-------|--------------|----------------|--------------|--------------|--------------|--------------|--------------|--------------|-------------------|--------------|--------------|--------------|------------|--------------|--------------|--------------|-------------|--------------| | Time, | ma | - ma | TC | sec | TC
38 | TC 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51_ | 52 | 53 | 54 | 55 | 56 | 57 | | 0 | 77 | 77 | 77 | 77 | 77 | 82 | 83 | 83 | 84 | 76 | 76 | 76 | 76 | 76 | 75 | 77 | 77 | 82 | 78 | 77 | | 30 | 173 | 297 | 384 | 197 | 102 | 263 | 295 | 287 | 248 | 117 | 106 | 256 | 337 | 259 | 247 | 106 | 104 | 280 | 362 | 233 | | 60 | 466 | 551 | 649 | 547 | 182 | 474 | 528 | 503 | 411 | 182 | 202 | 450 | 595 | 456 | 429 | 176 | 154 | 438 | 553 | 361 | | 90 | 759 | 810 | | 865 | 305
478 | 720 | 788
1086 | 751 | 610
 884 | 259 | 335
504 | 650
897 | 835
1115 | 669 | 641
922 | 277
420 | 222 | 623
862 | 762
1015 | 524
748 | | 121 | 1063 | 1080 | 1356 | | 723 | 1019
1277 | 1331 | 1037
1282 | | 370
535 | 695 | 1019 | | 929
1058 | | 610 | 221
 485 | | 1210 | | | 151
181 | | 1334 | | 1499 | 920 | 1325 | | 1309 | 1195 | 707 | | 1039 | 1227 | 1073 | 1084 | 765 | 614 | 1137 | | 1054 | | 241 | 1403 | | 1382 | 1476 | 1134 | 1357 | 1387 | 1325 | 1225 | 956 | 1024 | 1066 | 1242 | 1084 | 1118 | 967 | 822 | 1189 | | 1116 | | 302 | 1395 | | 1371 | 1456 | 1217 | 1378 | 1402 | | 1255 | 1073 | 1105 | | | 1092 | 1135 | 1061 | 958 | | | 1160 | | 332 | 1398 | 1341 | 1364 | 1451 | 1233 | 1383 | | 1332 | 1258 | 1099 | | 1088 | | | | 1087 | | 1251 | | 1166 | | 362 | 1391 | 1337 | 1363 | 1445 | 1242 | 1382 | 1417 | 1332 | 1257 | ا الد | 1140 | 1092 | 1256 | 1094 | 1138 | 1105 | 1035 | 1265 | 1310 | 1177 | | 393 | | | 1359 | | 1249 | | | | | | | 1096 | | | | | 1058 | | | 1179 | | 423 | | | 1362 | | 1253 | 1386 | | | | 1134 | | 1097 | | | | 1129 | | 1277 | 1314 | | | 484 | 1399 | | 1366 | 1451 | | 1387 | 1423 | | 1263 | | | 1099 | | | | 1142 | | | | 1192 | | 544 | | 1352 | | 1463 | | 1389 | | 1342 | 1273 | | | 1099 | | | | 1150 | | | 1319 | 1189 | | 605 | 1407 | | 1370 | 1467 | 1264 | 1390 | | | 1269
1270 | 1160
1164 | | 1098 | | 1094
1093 | | 1157
1159 | 1123 | 1286
1285 | | 1186 | | 620
635 | 1407 | | 1364 | 1465
1461 | 1265
1266 | 1390
1391 | 1425 | 1337
1342 | 1272 | 1166 | | 1097
1102 | | | 1148 | 1161 | 1127 | | 1314 | 1189 | | 650 | 1400 | | 1366 | 1455 | | 1392 | | 1339 | | | 1176 | | | | | 1163 | | 1296 | | 1202 | | 666 | 1403 | | | 1454 | | 1393 | | | | | 1177 | | | | | | | | 1326 | 1207 | | 696 | 1413 | 1345 | 1368 | 1449 | | 1395 | 1431 | 1338 | 1278 | 1171 | 1179 | 1106 | 1257 | 1103 | 1152 | 1170 | 1160 | 1315 | 1343 | 1231 | | 726 | 1401 | | 1366 | 1448 | | 1397 | | 1336 | | | 1180 | | | | | | | | | 1236 | | 787 | 1419 | | 1372 | | | 1398 | | | | | 1182 | | | | | 1176 | | 1322 | | 1240 | | 817 | 1423 | | 1376 | | 1276 | | | 1338 | 1283 | | 1183 | | | | | | | 1325 | | 1243 | | 847 | 1419 | | 1377 | 1461 | | 1401 | | 1338 | | 1178 | 1183 | | 1257 | 1103 | | 1178 | 1184 | | 1349 | 1240 | | 863 | 1411 | | 1382 | | 1278 | | | 1338 | | | 1183 | | | 1101 | | 1178 | | 1320 | | 1231 | | 878
908 | 1409 | | 1379
1380 | 1472
1477 | 1276
1274 | 1396 | 1434
1427 | 1343
1342 | 1274
1278 | 1177
1181 | 1181 | 1099 | 1256
1258 | 1098
1098 | 1150 | 1176
1175 | | 1306
1300 | | 1210
1196 | | 969 | 1409
1416 | 1365 | 1384 | 1486 | 1275 | | 1429 | 1351 | 1278 | 1185 | 1183 | | 1255 | 1096 | 1148 | 1176 | 1143 | 1296 | 1321 | 1192 | | 1030 | | | 1387 | | 1278 | | | 1348 | 1280 | | | | | | | | 1145 | | | 1191 | | 1076 | 1407 | 1207 | 1302 | 1480 | 1237 | 1281 | 1297 | 1206 | 1143 | 1150 | 1090 | 882 | 971 | 874 | 917 | 1112 | 1103 | 1150 | 1175 | 1075 | | 1106 | 1013 | 945 | 975 | 1058 | 1083 | 998 | 999 | 905 | 867 | 988 | 971 | 721 | 769 | 699 | 732 | 1000 | 968 | 911 | 904 | 813 | | 1137 | 763 | 697 | 726 | 777 | 913 | 748 | 733 | 652 | 630 | 789 | 834 | 569 | 582 | 537 | 565 | 875 | 794 | 707 | 670 | 602 | | 1198 | 518 | 472 | 494 | 517 | 647 | 466 | 448 | 388 | 388 | 483 | 608 | 393 | 380 | 353 | 365 | 667 | 550 | 503 | 451 | 404 | | 1258 | 411 | 382 | 403 | 409 | 491 | 338 | 328 | 289 | 289 | 348 | 465 | 299 | 280 | 264 | 268 | 527 | 426 | 404 | 366 | 323 | | 1319 | 350 | 328 | 343 | 348 | 397 | 267 | 262 | 236 | 238 | 289 | 373 | 241 | 225 | 213 | 215 | 426 | 350 | 339 | 299 | 274 | | 1379 | 303 | 288 | 300 | 302 | 333 | 221 | 220 | 202 | 202 | 248 | 311 | 203 | 189 | 182 | 182 | 354 | 295 | 292 | 259 | 237 | | 1440 | 267 | 257 | 268 | 267 | 286 | 189 | 190 | 177 | 177 | 223 | 265 | 176 | 166 | 160 | 158 | 304 | 256 | 255 | 228 | 210 | | 1501 | 244 | 231 | 241 | 242 | 251 | 168 | 169 | 159 | 159 | 203 | 232 | 157 | 149 | 145 | 142 | 270 | 228 | 227 | 203 | 190 | | 1802 | 220 | 231 | 215 | 239 | 197 | 165 | 162 | 167 | 170 | 214 | 183 | 138 | 127 | 120 | 127 | 223 | 243 | 206 | 205 | 209 | TABLE VIII.- MEASURED VALUES OF LOAD, STRAIN, TEMPERATURE, AND DEFLECTION FOR $1,600^{\circ}$ F TEST - Continued (b) Second heating cycle: 3 loads, 19 deflections, 66 top skin thermocouples, 8 transverse frame web thermocouples, 3 deflectometer wire thermocouples, 1 air thermocouple - Concluded | | | | | | | | | Tem | eratı | re, c | F, at | : - | _ ~ | | | | | | | Lateral | |--|--|--|--|---|---|--|--|--|--|--|---|--|--|--|--|--|---|--|---|---| | Time,
sec | TC
271 | TC
272 | TC
273 | TC
274 | IC
275 | TC
276 | TC
277 | TC
278 | TC
282 | TC
283 | TC
284 | TC
285 | TC
286 | TC
287 | TC
288 | TC
294 | TC
295 | TC
296 | IC
297 | defl. | | 0
30
60
90
121
151
181
241
302 | 77
79
92
133
242
482
723
917
989 | 77
79
91
129
233
462
693
884
956 | 77
79
91
125
218
423
631
825
907 | 77
79
93
139
261
485
647
800
878 | 78
79
93
134
239
432
576
732
818 | 77
78
90
124
214
380
511
667
761 | 77
77
88
119
198
346
469
621
713 | 77
78
86
113
181
313
426
569
659 | 1185
1511
1546
1560 | 1561 | 81
371
665
934
1220
1487
1504
1502 | 1496
1503
1499 | 112
400
678
950
1228
1434
1443
1443 | 1409 | 79
375
666
957
1268
1385
1386
1385 | 170
166
174 | 75
79
82
86
93
95
94
100
98 | 75
76
78
81
83
84
85 | 75 75 78 88 101 104 109 116 | 0
0
0
.010
.050
.130
.200
.410 | | 362
362
393
484
544
605
620
635
650 | 1011
1028
1043
1054
1072
1086
1094
1097
1099 | 979
998
1013
1026
1046
1060
1070
1072
1074 | 935
956
975
990
1011
1027
1036
1039
1041 | 907
931
951
968
993
1012
1024
1027
1030 | 850
874
896
915
941
962
975
979
982 | 792
820
842
862
891
913
929
932 | 745
774
797
818 |
723
746
767
803
827
851
854
858 | 1560
1560
1560
1560
1560
1561
1561 | 1561
1564
1564
1568
1568
1568
1568 | 1499
1501
1499
1500
1500
1501
1501 | 1499
1500
1499
1500
1500
1499
1498 | 1443
1446
1448
1448
1442
1442
1442
1443 | 1407
1408
1408
1408
1408
1407
1407 | 1383
1385
1384
1387
1387
1385
1386
1386
1386 | 155
154
159
162
158
159
173
172
173 | 107
106
96
92
91
92
93
93 | 85
84
85
86
86
86
85
85
85
84 | 119
120
125
130
130
135
138
138
139 | .680
.740
.810
.870
.940
.980
1.020
1.025
1.030 | | 666
696
726
787
817
847
863
878
908
969
1030 | 1104
1106
1109
1112
1114
1115
1116
1117 | 1077
1079
1083
1086
1088
1091
1091
1092
1094 | 1047
1050
1053
1055
1059
1059
1060
1062
1065 | 1035 | 987
991
996
1002
1006
1008
1007
1007
1009
1014 | 943
947
952
959
964
965
968
972 | 905
911
915
924
927
928
929
930 | 861
872
881
885
888
889
889
892
897 | 1563
1567
1569
1569
1569
1569
1569
1569 | 1570
1571
1571
1571
1571 | 1501
1501
1501
1502
1502
1502
1505 | 1497
1496
1499
1499
1498 | 1449
1450
1449
1451
1451
1452 | 1407
1407
1407
1409
1410
1410
1411
1411
1411 | 1387 | 167
174
173
156
165
173
168
166
162
165 | 96
98
97
98
98
98
97
95
100
98 | 83 | | 1.040
1.045
1.050
1.055
1.060
1.075
1.070
1.075
1.075 | | 1076
1106
1137
1198
1258
1319
1379
1440
1501
1802 | 993
871
687
571
488
425
376
336
232 | 1080
967
848
673
561
480
419
372
333
228 | 1049
944
834
667
557
476
417
370
331
226 | 1023
935
837
685
578
498
436
386
345
244 | 802
651
543
465
405
357
318 | 434
371
325
287 | 836
748
598
491
413
351
305
268 | 873
801
716
568
464
386
327
283
247
183 | | 1382
1052
803
580
475
(e) | 1270
963
710
521
441
(e) | 1345
1014
720
412
293
(c) | 1232
930
718
501
384
(c) | 934
714
480
360
(c) | 1100
844
620
410
305
(c) | 108 | 86
83
82
80
80
78
79
80
78 | 80
78
77
77
77
76
75
76
75
75 | 135
122
113
100
96
90
86
83
83 | 1.070 | TABLE VIII.- MEASURED VALUES OF LOAD, STRAIN, TEMPERATURE, AND DEFLECTION FOR 1,600° F TEST - Continued (c) Third heating cycle: 1 top skin thermocouple, 36 bottom skin thermocouples, 57 right longitudinal spar cap thermocouples | | Ţ | | | | | | | | | | _ | | | | | | | | _ | | |---|--|---|---|--|---|---|--|--|---|---|---|---|--|--|---|--|---|--|---|--| | Time. | | , - | | | | | | Te | mper | atur | e, ^o F | , at | - | | | | | | | | | sec | TC
132 | TC
59 | TC
60 | TC
61 | TC
62 | TC
63 | TC
64 | TC
65 | TC
66 | TC 67 | TC
68 | TC
69 | TC
70 | TC
71 | TC
72 | TC
73 | TC
74 | 10
75 | TC
76
(e) | TC
77 | | 0
30
60
90
121
151
181
251
312
372 | 78
389
695
968
1266
1386
1397
1416
1421
1424 | 76
80
95
139
245
466
679
849
877
890 | 467 | 75
76
79
89
111
153
197
275
320
355 | 76
78
84
101
142
224
316
468
537
575 | 77
79
93
132
235
453
670
854
890
906 | 744 | 170 | 77
79
86
105
151
252
376
588
673
719 | 201
280
421 | 78
79
89
118
191
359
578
853
920
949 | 180
315
491
737
805 | 234
336
513 | 77
79
85
102
140
223
316
494
585
637 | 239
345
519 | 77
81
98
134
209
367
562
805
870
902 | 352
527
729 | 77
78
85
101
135
204
284
433
519
580 | 320 | 77
79
87
105
145
226
320
485
573
633 | | 399
414
429
499
559
619
649
679
709
739 | 1428
1423
1423
1426
1430
1431
1428
1429
1430
1434 | 895
898
903
905
911
912
913 | 579
584
590
610
623
631
(d) | 405
405
412 | 592
598
616
629
639
641
642
645 | 927 | 862
865
870
883
889
895
898
898
899
902 | 809
827
836
846
848
849 | 769
780
791
794
795
798 | 562
566
574
597
613
626
633
636
638 | 965
978
984
991 | 850
854
870
881
890
895 | 665
673
682
712
729
743
751
756
762
764 | 656
665
690 | 675
681
710
729
747
752
757 | 910
916
920
934
942
953
955
959
961
966 | 846
870 | 603
614
626
673
709
740
755
765
775
783 | 472
479
506 | 656
668
679
727
761
790
803
811
821
830 | | 799
829
859
889
919
949
979
1039
1069
1100 | 1435
1436
1438
1437
1442
1442
1417
1157
916 | 917
916
918
920
921
923
923
891 | | 424
425
424
429
417 | 656
658
659
660
661
664
667 | 933
934
936
936
939
941
910 | 905
906
908
909
910
913
916 | 858
858
861
863
864
865
868
871
851
773 | 807
809
811
811
813
815
819 | 643
645
648
650
654
655 | 1005
1006
1007 | 908
909
911
913
914
915
918 | 772
774
774
778
782
782
780
790
774
718 | 747
743
747
753
753
754
756
768
754
701 | 7 91
794
778 | 984
956 | 922
926
926
928
931
933
933 | 821
825
828
821 | 569
570
568
573
573
578
583 | 841
848
852
855
860
862
867
870
860
813 | | 1130
1190
1251
1311
1372
1433
1493 | | 498
397
329
280
244 | | 286
236
201
177
158 | 414
330
271
227
197 | 345
294
255 | 581
475
404
349
307 | 683
539
440
374
323
283
251 | 523
428
363
312
272 | 268 | 425
364
318 | 720
578
481
411
358
316
283 | 434
364
310
267 | 499
405
341
289 | 521
430
363
311
271 | 413 | 595
506
442
389
349 | 494 | 413
346
296
258
229 | 755
652
571
502
444
398
357 | dIntermittent short in thermocouple. eReadings low and erratic. TABLE VIII.- MEASURED VALUES OF LOAD, STRAIN, TEMPERATURE, AND DEFLECTION FOR 1,600° F TEST - Continued (c) Third heating cycle: 1 top skin thermocouple, 36 bottom skin thermocouples, 57 right longitudinal spar cap thermocouples - Continued | ſ | ı | | | | - | | | | | | | | | | | | | | | | |--|---|---|--|--|---|--|--|--|--|--|--|--|--|--|--|---|--|--|--
--| | | • | | | | | | | Ter | mera | ture | , °I | r, at | ; - | | | | | | | | | Time,
sec | 78 | TC
79 | TC
80 | TC
81 | TC
82 | TC
83 | TC
84 | TC
85 | тс
86 | TC
87 | TC
88 | TC
89 | TC
90 | TC
91 | TC
92 | TC
93 | TC
94 | TC
310 | TC
311 | TC
312 | | 0
50
60
90
121
151
181
251
312
372 | 77
80
94
132
225
420
618
813
867
899 | 77
79
93
124
191
319
468
686
769
817 | 77
79
89
105
131
175
229
354
445
517 | 77
79
91
115
164
261
376
584
690
753 | 76
78
89
106
135
188
252
391
481
555 | 77
80
95
131
210
359
527
750
828
874 | 77
79
91
117
175
295
440
635
702
745 | 77
77
80
89
110
157
220
367
480
572 | 77
78
83
94
120
177
255
430
531
596 | 77
78
82
90
109
148
204
333
417
478 | 77
78
80
84
93
108
152
201
261 | 77
77
79
85
100
126
152
211
257
304 | 76
78
81
90
108
146
192
295
367
423 | 180
243
369
445 | 77
78
84
100
137
211
291
444
524
573 | 77
79
85
101
139
213
293
442
524
575 | 77
77
80
88
107
145
188
287
368
440 | 76
76
76
77
77
79
81
91
95
104 | 77
77
77
78
80
83
95
101
113 | 78
78
78
79
81
87
98
154
184
237 | | 399
414
429
499
559
619
649
679
709
739 | | 847
872 | 546
563
581
646
691
727
741
750
758
765 | 772
782
790
824
842
856
864
865
865
871 | 588
605
620
688
734
764
777
784
792 | 889
895
902
926
941
951
956
958
960 | 757
764
773
807
826
842
848
854
858
861 | 637 | 615
626
635
669
687
704
709
713
718
721 | 499
507
518
562
588
612
622
628
635
643 | 292
311
321
407
459
502
522
539
555
569 | 321
332
340
375
397
416
422
425
430
432 | 519
537
541
544
547 | 513
522
531
563
579
599
601
604
605
612 | 588
597
603
625
641
650
658
661
666
668 | 647 | 468
483
496
548
578
508
605
621
625 | 109
110
113
123
135
143
149
153
158
163 | 119
122
127
144
161
177
186
194
203
210 | 262
275
287
344
387
416
437
447
460
470 | | 799
829
859
889
919
949
979
1039
1069 | 986
987
990
991
994
994
997
1000
973
878 | 917
921
922
924
926
931
931
917
852 | 772
778
780
784
786
788
790
792
788
769 | | 813
814
816
819 | 964
967
967
967
968
969
972
973
958
881 | 865
868
870
870
875
875
879
865
803 | 784
788
792
795
796
799
802
806
800
760 | 728
731
733
736
738
740
743
747
737 | 657 | 616 | 442
445
445
445
451
458
459
451
430 | 562
567
569
573
575
577
580
571
538 | 623
625
628
631 | 671
673
674
675
676
679
686
688
622 | 682
683
685
686
690
696
677
626 | 632
636
636
640
644
643
656
646 | 172
177
181
186
190
195
198
205
208
210 | 235
242
250
259
267 | 489
498
505
512
518
524
529
537
539 | | 1130
1190
1251
1311
1372
1433
1493 | 778
625
528
456
402
357
320 | 773
641
554
489
437
393
357 | 735
649
572
505
450
404
364 | 357 | | 795
656
563
491
438
391
353 | 734
623
545
483
436
395
360 | 703
587
492
418
362
317
281 | 625
504
413
345
295
257
227 | 502
424
358
306
267 | 615
567
509
455
402
358
317 | 354
307
272
239
215 | 494
406
335
285
246
216 | 413
331
282
242
211 | 556
441
356
291
245
210
185 | 563
1449
364
302
256
221
195 | 574
477
399
339
294
257
230 | 211
210
208
205
201
196
193 | 300
296
291 | 530
510
480
455
426
398
375 | TABLE VIII.- MEASURED VALUES OF LOAD, STRAIN, TEMPERATURE, AND DEFLECTION FOR 1,600° F TEST - Continued (c) Third heating cycle: 1 top skin thermocouple, 36 bottom skin thermocouples, 57 right longitudinal spar cap thermocouples - Continued | m | | | | | | | Ter | mpera | ture, | о _{F, і} | at - | | | | | | | | | | |--|---|--|--|--|--|--|--|--|---|--|---|--|---|--|---|---|--|--|--|---| | Time, | TC
141 | TC
142 | TC
143 | TC
1 ^{††} | TC
145 | TC
146 | TC
147 | TC
148 | TC
149 | TC
150 | TC
151 | TC
152 | TC
153 | TC
154 | TC
155 | TC
156
(e) | TC
307 | TC
308 | TC
309 | TC
163 | | 0
30
60
90
121
151
181
251
312
372 | 78
77
79
84
96
125
172
328
472
595 | 77
78
80
90
119
180
262
499
688
822 | 78
78
80
86
104
145
199
372
546
706 | 78
78
79
86
107
160
248
505
718
874 | 78
78
79
85
105
156
241
495
708
866 | 78
78
79
86
107
160
246
492
701
858 | 78
78
79
87
108
163
248
496
702
851 | 78
78
79
85
105
155
236
472
667
817 | 78
78
79
83
94
122
172
346
523
687 | 78
78
79
85
104
153
234
472
669
822 | 78
78
80
84
94
117
159
321
495
663 | 77
77
79
84
99
137
203
424
621
779 | 77
77
78
81
89
108
142
292
467
645 | 77
79
85
102
144
224
499
738
906 | 78
78
78
81
88
105
142
313
509
693 | 76
76
77
77
77
77
77
86
224
596 | 76
76
76
76
76
77
77
77
78 | 77
76
77
77
77
78
79
81
84
87 | 77
78
78
78
79
80
82
90
99 | 77
77
78
80
87
100
118
165
204
241 | | 399
414
429
499
559
619
649
679
709
739 | 638
660
680
753
793
829
837
844
849 | 998
1001 | 965
995
1005
1013
1019 | | 1055
1072
1079
1084
1088 | 1080
1084 | 1058
1063
1068 | 1035
1043
1048 | | 1069
1076
1083 | 1042
1052 | 834
861
886
973
1019
1050
1062
1072
1080
1087 | 1032
1048
1061
1072 | | 1043
1058
1071
1081 | 702
741
775
894
962
1007
1024
1038
1050
1059 | 86
87 | 91
95 | 116
119
130
141
152
157
162
166 | 264
272
306
329
350
359
367
375 | | 799
829
859
889
919
949
979
1039
1069 | 864
867
869
870
872
875 | 1008
1010
1011
1012
1013
1015
1017 | 1034
1036
1038
1040
1042
1043
1047
1042 | 1095
1098
1099
1101
1103
1104
1108
1100 | 1101
1103
1105
1106
1109
1112
1106 | 1096
1099
1101
1102
1104
1106
1110
11103 | 1080
1082
1084
1086
1088
1090
1094
1086 | 1067
1070
1072
1074
1076
1078 | 1059
1062
1065
1068
1070
1075 | 1101
1105
1108
1110
1113
1115
1121
1117 | 1078
1083
1087
1090
1093
1096
1102 | 1106
1113
1116
1118
1123
1120 | 1097
1101
1104
1107
1109
1112
1116
1116 | 1150
1152
1153
1154
1156
1156
1162
1169 | 1109
1112
1115
1117
1120
1125
1125 | 1079
1085 | 91
92
93
94
95
96 | 133 | 184
187
190
194
197
200
205
208 | 404
409
412
416
419
425
425 | | 1130
1190
1251
1311
1372
1433
1493 | 826
746
663
589
524
469
424 | 919
805
706
627
551
505
457 | 989
893
793
702
625
559
503 | 1009
881
773
684
612
552
501 |
1023
897
787
696
622
561
509 | 1022
898
788
698
624
562
509 | 999
875
769
682
611
552
501 | 991
873
771
687
618
560
510 | 1022
921
818
728
652
586
530 | 1033
912
809
724
654
596
546 | 1050
950
847
755
677
611
553 | 1045
941
831
748
680
622
573 | 1075
982
883
795
718
653
598 | 1076
946
836
750
680
622
572 | 1085
990
892
806
734
672
619 | 1051
948
815
690
598
502
424 | 98
98
97 | 137
137 | 203
196
190
182
177 | 401
367
334
304
278
255
234 | eReadings low and erratic. (c) Third heating cycle: 1 top skin thermocouple, 36 bottom skin thermocouples, 57 right longitudinal spar cap thermocouples - Continued | [| | • | | | | | | | Te | mper | ature | , o _F | , at - | - | | | | | | | |---|--|---|--|--|---|---|---|--|---|---|--|---|---|--|--|--|---|---|--|--| | Time,
sec | TC
164 | TC
165 | TC
166 | TC
167 | TC
168 | тс
169 | TC
170 | | TC
172 | TC
173 | TC
174 | TC
175 | TC
176 | TC
177 | TC
184 | TC
185 | TC
186 | TC
187 | TC
188 | TC
189 | | 0
50
60
90
121
151
181
251
312
372 | 77
78
82
92
115
147
234
311
382 | 77
77
80
87
103
125
193
258
323 | 78
79
82
92
113
144
240
336
428 | 77
78
81
90
110
140
231
323
412 | 77
79
81
91
110
140
234
327
420 | 77
78
79
84
98
127
169
289
400
504 | 77
78
83
95
123
163
282
395
502 | 140
238
333 | 78
77
79
83
93
121
164
297
422
538 | 77
78
81
87
103
132
235
342
451 | 77
77
79
83
95
124
171
315
446
570 | 77
78
80
87
104
134
241
353
467 | 77
77
79
84
97
129
184
355
513
663 | 78
77
78
80
84
98
123
222
330
445 | 78
78
83
99
140
239
373
666
856
983 | 77
78
85
108
169
306
450
719
892
1016 | 78
79
85
106
161
280
414
690
868
993 | 78
78
83
100
145
251
386
665
846
972 | 78
80
89
119
194
307
579
778
923 | 78
78
81
93
127
202
298
542
732
863 | | 399
414
429
499
559
619
649
679
709 | 409
424
438
494
532
560
572
583
592
599 | 350
365
380
445
534
552
568
582
594 | 465
486
505
584
635
674
688
701
712 | 468 | 499 | 567
588
668
720
758 | 674
727
767
784
796
808 | 489
510
599
661
713
734
753
770 | 785
830
849
864 | 653
728
789
814
836 | 619
646
671
774
841
891
912
929
944
956 | 542
569
681
760
824
849
872
891 | 750
778
884
946
987
1003 | 522
549
667
752
821
849
874
896 | 1149
1154
1158 | 1074
1089
1143
1168
1184
1189
1193
1196 | 1052
1068
1121
1147
1164
1169
1173 | 1102
1128
1145
1150
1155 | 970
992
1012
1073
1102
1120
1127
1131
1135
1139 | 904
925
942
997
1022
1038
1044
1048
1052 | | 799
829
859
889
919
949
979
1039
1069 | 622
624
627
627
632
631 | 615
623
631
638
644
649
655
662
652 | 739
743
748
753
756
760
766
770
765
741 | 730
737
743
748
752
756
762
767
763
745 | 763
769
775
780
784
789
795
791 | 825
831
835 | 843
848
853
855
860
867
862 | 819
827
835
841
846 | 922
928
932
936
939
947
946 | 908
917
925
932
937 | 983
990
995
1000
1004
1008
1015
1013 | 966
971 | 1046
1050
1052
1054
1056
1058
1063
1062 | 952
961
968
974
979
984
992 | 1174
1176 | 1207
1209
1211
1213
1215
1218
1222
1206 | 1187
1189
1191
1193
1194
1197
1201
1186 | 1170 | 1147 | 1061
1063
1065
1067
1069
1070
1073
1076
1061 | | 1130
1190
1251
1311
1372
1433
1493 | 524
460 | 632
577
520
467
420
378
341 | 623
542
473
417
369 | 479
421
371 | 741
659
578
505
443
393
350 | 778
682
595
519
457
405
362 | 702
612
535
470
418 | 742
666
597
533
479 | 884
788
698
620
552
495
446 | 911
835
754
679
612
552
500 | 953
859
771
693
625
566
514 | 945
875
798
725
658
599
546 | 894
799
719
652
595 | 964
899
827
760
699
645
596 | 1054
911
798
708
635
575
524 | 1066
919
805
713
639
577
525 | 1057
915
802
712
637
575
522 | 1054
913
801
711
637
575
523 | 1056
922
809
718
643
581
528 | 951
827
724
641
573
516
469 | (c) Third heating cycle: 1 top skin thermocouple, 36 bottom skin thermocouples, 57 right longitudinal spar cap thermocouples - Concluded | Time, | | | | | Ter | npe r | atur | e, °F | , at . | <u>.</u> | | | | | |---|--|--|--|--|--|--|--|--|--|--|--|--|--|--| | sec. | TC
190 | TC
191 | TC
192 | TC
193 | TC
194 | TC
195 | TC
196 | TC
95 | TC
97 | TC
99 | TC
101 | TC
103 | TC
105 | TC
107 | | 0
30
60
90
121
151
181
251
312
372 | 78
78
82
93
121
191
293
562
761
893 | 77
78
79
88
113
178
286
571
783
931 | 77
79
85
102
136
179
293
397
493 | 77
78
81
88
105
129
205
285
368 | 78
79
83
93
116
146
226
300
372 | 78
78
81
86
100
122
195
275
359 | 78
79
83
93
116
149
242
333
426 | 77
77
81
97
140
244
378
658
841
970 | 78
78
79
86
109
166
262
523
729
881 | 78
77
79
87
110
165
248
492
698
849 | 77
78
81
91
112
145
247
345
442 | 77
79
84
96
117
143
221
298
376 | 76
77
78
83
95
126
177
327
455
565 | 77
77
78
81
89
107
136
226
318
414 | | 399
414
429
499
559
619
649
679
709
739 | 933
952
969
1020
1044
1059
1065
1069
1073 | 977
999
1018
1077
1105
1123
1129
1137
1140 | 531
552
571
647
695
732
746
759
769
778 | 404
423
442
522
578
624
642
658
672
684 | 402
419
433
499
547
586
600
613
626
636 | 395
415
434
516
574
620
639
655
668
681 | 465
488
509
598
658
707
727
742
756
768 | 1048
1103
1130
1147
1153
1157
1161 | 931
954
975
1039
1070
1088
1095
1100
1104 | 898
921
942
1006
1036
1054
1060
1065
1069 | 480
501
522
604
658
700
717
731
743
754 | 410
427
445
518
572
631
645
659
670 | 607
628
648
726
774
809
824
836
846
855 |
454
477
499
591
654
703
723
740
755
767 | | 799
829
859
889
919
949
979
1039
1069
1100 | 1082
1084
1086
1088
1090
1091
1094
1098
1087
1039 | 1146
1148
1150
1152
1154
1156
1158
1162
1157
1120 | 794
798
805
809
812
816
821
825
815
785 | 703
711
718
723
728
733
738
744
741
727 | 651
659
664
670
675
678
684
689
681 | 700
708
715
720
725
725
735
741
737 | 787
794
800
806
811
816
820
827
823
801 | 1171
1173
1175
1176
1178
1181 | 1114
1115
1118
1120
1121
1123
1125
1129
1124
1093 | 1079
1082
1084
1086
1087
1089
1091
1095
1087 | 771
778
784
789
793
798
802
807
803
783 | 688
695
703
708
711
716
723
726
720
700 | 869
875
880
883
887
891
894
901
896
870 | 787
795
801
807
812
817
821
829
827
810 | | 1130
1190
1251
1311
1372
1433
1493 | 972
837
728
641
571
513
465 | 1057
920
806
714
640
578
526 | 563 | 700
628
552
484
426
377
337 | 627
552
481
423
371
331
296 | 699
627
552
484
427
379
339 | 766
685
607
536
476
425
380 | 1059
919
806
715
641
579
526 | 1039
912
801
710
635
573
520 | 1000
877
768
680
608
546
495 | 749
663
580
506
445
393
350 | 671
598
524
459
405
358
320 | 824
719
626
546
482
428
382 | 782
704
625
553
490
437
391 | TABLE VIII.- MEASURED VALUES OF LOAD, STRAIN, TEMPERATURE, AND DEFLECTION FOR 1,600° F TEST - Continued (d) Fourth heating cycle: 1 top skin thermocouple, 18 left longitudinal spar cap thermocouples, 73 transverse frame cap thermocouples | | Γ- ' | | ~. | | - | | - | Тещре | eratu | re, ^O I | et et |
t - | | | | | | | | |--|--|--|--|--|---|--|--|--|--|--|--|--|---|---|--|--|--|--|---| | Time, | TC | TC | TC | TC | Tre | TC | 500 | 132 | 301 | 302 | 303 | 157 | 158 | 159 | 160 | 161 | 162 | | 305 | 306 | | 180 | 181 | 182 | 183 | 178 | | 0
30
60
90
121
151
176
236
297
357 | 79
399
700
980
1279
1380
1390
1402
1414
1416 | 77
77
77
78
79
81
84
93 | 77
78
78
78
79
80
82
86
96 | 78
78
78
79
81
86
93
111
160
204 | 79
79
82
91
120
182
251
458
662
813 | 80
80
83
94
126
196
277
511
744
912 | 79
79
81
87
108
161
232
446
665
838 | 79
79
81
88
107
154
217
426
646
818 | 79
80
82
89
110
160
232
482
741
921 | 79
80
84
95
125
171
343
540
711 | 76
76
76
76
76
77
77
78
79 | 77
77
77
77
78
79
80
83
87 | 77
78
78
79
80
82
86
97 | 79
81
86
99
127
157
239
323
399 | 79
79
80
85
97
123
152
239
339
437 | 79
81
85
97
127
166
284
414
537 | 79
79
81
85
99
130
169
289
421
549 | 79
79
81
87
102
138
186
335
502
658 | 79
79
81
83
93
116
149
264
397
531 | | 385
400
415
430
485
545
605
635
665
695 | 1417
1417
1417
1417
1420
1421
1421
1424
1425
1429 | 107
109
113
121
130
138
143
147 | 113
116
120
124
137
152
167
175
183
191 | 224
232
244
258
296
339
375
392
406
419 | 860
881
900
916
958
983
997
1001
1005
1008 | 1025
1068
1094
1111
1116
1120 | 1064 | 952
1013
1056
1085
1095
1104 | 1115
1137
1145 | 774
803
831
855
928
983
1021
1035
1047
1057 | 80
81
81
83
84
85
86
87
88 | 104
106
108 | 119
128
138
148
153 | 555
584
594
603 | 479
501
522
542
608
664
708
725
739
750 | 588
614
639
662
738
803
853
872
889
903 | 603
631
657
682
765
835
889
910
928
942 | 720
751
781
808
893
958
1002
1017
1030
1040 | 588
617
646
673
763
840
899
921
957 | | 726
786
816
846
877
907
937
967
1028
1058 | 1428
1430
1431
1432
1432
1437
1437
1433
1429
1253 | 165
169
174
177
181
185
189 | | 458
468
478
488
494 | 1014
1016
1017
1018
1019
1021
1022
1025 | 1133
1135
1137
1139
1141
1143
1144
1148 | 1132
1135
1138
1141
1143 | 1128
1133
1137
1140
1144
1147
1149 | 1166
1168
1169
1171
1173
1174
1175
1179 | 1084
1088
1091
1095
1098
1100 | 93
94
95
97 | 117
119
121
123
125
127
129
133 | 179
183
186
190
193
196
201 | 630
634
637
640
642
644 | 761
778
784
789
795
799
803
806
812
813 | 967
974 | 1002
1007
1010
1017 | 1070
1072
1075
1079 | 970
991
998
1004
1008
1013
1016
1020
1026 | | 1088
1119
1179
1240
1301
1361
1422
1483 | 988
751
458
333
262
219
191
171 | 203
205
206
204
202
199 | 287
292
297
298
297
295
291
286 | 525
522
503
480
453
429
403
380 | 995
949
834
731
648
580
522
473 | 1119
1067
932
812
715
638
575
520 | 1128
1078
951
838
747
671
610
556 | 1136
1090
968
857
768
694
634
581 | 1160
1107
972
855
763
688
627
575 | 1099
1068
966
866
784
714
656
607 | 98
99
99
98
98
98 | 137
138
137
137
136 | 203
198
193
186
180
174 | 637
611
537
467
408
360
319
286 | 799
771
686
600
522
457
404
359 | 961
925
824
728
645
574
515
464 | 1006
973
881
789
708
637
577
523 | 1066
1028
923
824
739
667
607
553 | 997
919
836
760
693
637
588 | TABLE VIII.- MEASURED VALUES OF LOAD, STRAIN, TEMPERATURE, AND DEFLECTION FOR 1,600° F TEST - Continued (d) Fourth heating cycle: 1 top skin thermocouple, 18 left longitudinal spar cap thermocouples, 73 transverse frame cap thermocouples - Continued | | | | | | | | Ten | merat | ure, | °F, ε | t - | | | | | | | | | | |--|--|---------------------------------|--|--|--|--|--|--------------------------------------|---|---|--|--|---|--|--|--|--|---|---|--| | Time,
sec | TC
202 | TC
203 | TC
204 | TC
205 | TC
206 | TC
207 | TC
208 | TC
209 | TC
216 | TC
217 | TC
218 | TC
219 | TC
221 | TC
222 | TC
223 | TC
224 | TC
231 | TC
232 | TC
233 | TC
234 | | 0
30
60
90
121
151 | 78
80
109
180
309
535 | 149
232
364 | 79
80
99
155
264
468 | 78
76
78
86
107
161 | 79
79
79
82
89
103 | 197 | 79
81
99
138
211
249 | 79
86
119
189
312
527 | 79
92
139
226
366
587 | 80
86
112
164
258
419 | 79
85
121
195
318
509 | 79
85
123
203
338
545 | 80
85
113
174
284
462 | 79
81
104
161
268
464 | 79
79
84
94
129
208 | 79
80
84
97
132
213 | 79
79
81
88
104
139 |
79
79
79
81
83
90 | 79
79
81
88
104
136 | 79
79
80
85
96 | | 176
236
297
357 | 760
1021
1085
1108 | | 1119 | 360
464
527 | 116
152
186
211 | 760 | 514
843
996
1059 | 739
1041
1127
1158 | 769
1016
1100
1135 | 565
829
970
1051 | 669
912
1004
1042 | 710
950
1043
1079 | 1125 | 1137
1187 | 717
821 | 304
508
661
761 | 365
443 | 100
134
178
228 | 167
242
312
369 | 137
190
241
286 | | 385
400
415
430
485
545 | 1114
1116
1118
1120
1128
1134 | 835
839
843
854
861 | 1143
1148 | 548
555
562
568
585
597 | 231
236
251
268 | 800
810
819
843
858 | 1083
1088
1094
1107
1117 | 1173
1179
1186 | 1149
1153
1158
1169
1177 | 1090
1102
1114
1148
1175 | 1056
1061
1064
1075
1082 | 1091
1095
1098
1107
1112 | 1179
1190
1224
1248 | 1206
1211
1215
1226
1233 | 865
876
886
912
930 | 806
819
830
861
882 | 501
514
557
593 | 252
264
277
289
330
368
404 | 392
401
412
421
449
467
489 | 312
320
328
352
376 | | 605
635
665
695 | 1138
1138
1139
1140 | 867
869
870 | ' | 604
607
609
611 | 294 | 867
871
873
875 | 1124
1126
1127
1128
1129 | 1192 | 1183
1183
1185 | 1192
1198
1202
1205
1208 | 1089
1091
1092
1094 | 1117
1119
1120
1121 | 1267
1271
1273
1275 | 1237
1237
1238
1239
1240 | 944
948
950
952 | 903
904 | | 419
433
444
455 | 409
498
503
506 | 391
399
406
410
414 | | 786
816
846
877
907
937 | 1144
1144
1145
1146
1147 | 876 | 1158
1159
1159 | 616
616
616
619
620 | 315 | 881
882
883
885
886
887 | 1131
1132
1132
1133
1134
1134 | 1198
1198
1200
1201 | 1191
1192
1194
1196 | 1215
1217 | 1098
1098
1099
1100 | 1125 | 1282
1283
1285
1287 | 1241
1242
1242
1243
1244
1246 | 957
958 | | 666
671
676
681
686
689 | 474
480
488
494
499
505 | 515
518
520
521
526 | 421
423
427
428
430
432 | | 967
1028
1058 | 1148
1152
1148
1096 | 880
882
873 | 1163 | 622
626
625
599 | 320
327
327 | 888
892 | 1136
1140 | 1203
1207
1202 | 1198
1203
1197 | 1222
1226
1222 | 1103
1106 | 1130
1131
1112
1031 | 1290
1294
1288 | 1247
1251
1247
1281 | 964
968
966 | 922
927
925 | 691
697 | 510
517
519 | 529
527
524
504 | 434
441
440
428 | | 1119
1179
1240
1301
1361
1422 | 942 | 760
615
500
414
349 | 971
742
584
473
391
329 | 551
454
380
327
287
255 | 305
271
236
208
187
169 | 793
659
553
472
408 | 970
743
586
478
402
345 | | 1004
778
625
516
435
373 | 1088
897
750
640
553
483 | 912
706
559
457
382
327 | 925
723
575
469
392
334 | 1153
970
828
718
627
555 | 1068
839
675
556
466
397 | 865
719
604
516
447
393 | 822
681
568
483
417
365 | 639
547
466
402
350
308 | 511
482
441
397
356
319 | 474
399
334
283
244
214 | 407
360
315
274
240
215 | | 1483 | 272 | 261 | 283 | 231 | 156 | 316 | 301 | 290 | 325 | 427 | 285 | 289 | 495 | 343 | 349 | 323 | 275 | 288 | 191 | 195 | TABLE VIII.- MEASURED VALUES OF LOAD, STRAIN, TEMPERATURE, AND DEFLECTION FOR 1,600 F TEST - Continued (d) Fourth heating cycle: 1 top skin thermocouple, 18 left longitudinal spar cap thermocouples, 73 transverse frame cap thermocouples - Continued | Time,
sec | тс
236 | TC
210 | TC 211 | TC
113 | TC
243 | TC
212 | TC
213 | TC
214 | TC
114 | TC
220 | TC
215 | TC
225 | TC
226 | TC
115 | TC
251 | TC
227 | TC
228 | TC
229 | TC
116 | TC
235 | |--|--|--|---|--|--|---|---|--|--|---|--|--|--|--|--|--|--|--|---|--| | 0
30
60
90
121
151
176
236
297
357 | 79
79
83
95
132
222
333
599
781
884 | 80
127
212
338
525
791
963
1161
1223
1245 | 79
142
248
399
617
909
1066
1219
1264
1282 | | 78
84
112
172
276
464
668
988
1091
1128 | 79
81
96
139
224
395
597
934
1043
1084 | 82
154
263
414
627
896
1043
1204
1254
1272 | 1231
1272 | 79
100
156
250
399
626
811
1059
1139
1166 | | 79
81
98
142
232
407
607
932
1035
1072 | 136
177
307
441 | 130
171
298
431 | 78
78
81
89
109
157
216
375
520
632 | 79
80
82
90
112
162
224
389
537
650 | 189
261
438
586 | 147
192
318
443 | 79
79
84
97
130
200
272
430
555
645 | 163
219
361
486 | 79
79
82
92
117
173
238
390
517
613 | | 385
400
415
430
485
545
605
635
665
695 | 913
926
937
947
970
986
995
999
1001
1002 | 1251
1253
1256
1257
1263
1269
1275
1275
1276 | 1291
1296
1301
1305
1305
1305 | 1158
1161
1164
1174
1182
1188
1190
1191 | 1142
1145
1149
1159
1168 | 1100
1105
1109
1121
1131
1138
1140
1142 | 1279
1279
1284
1289
1291
1291
1291 | 1291
1292
1293
1296
1301
1302
1303
1302 | 1176
1178
1180
1188
1195
1198
1199
1200 | 1124
1127
1136
1144
1150
1151 | 1085
1089
1092
1102
1110
1117
1118
1119 | 615
633
649
697
733
756
764
771 | 606
624
641
688
725
748
756
762 | 707
722
768
803
825
833
839 | 708
724
740
785
819
841 | 777
818
850
871
879
884 | 577
594
610
624
663
693
714
722
728
732 | 677
691
706
718
754
782
802
808
814
817 | 619
635
650
663
702
732
753
761
767 | 646
662
677
690
728
758
778
778
785
791 | | 726
786
816
846
877
907
937
967
1028
1058 | 1008
1010
1011
1013
1015
1016
1017
1021 | 1281
1284
1284
1286
1287
1288
1293 | 1307
1311
1314
1314
1316
1317
1322 | 1195
1198
1199
1201
1203
1204
1206
1209 | 1193
1197 | 1148
1150
1150
1154
1155
1157
1158
1162 | 1295
1298
1300
1303
1305
1306
1307 | 1306
1310
1312
1315
1316
1317
1318
1322 | 1205
1207
1209
1211
1213
1214
1215
1219 | | 11.24
11.26
11.28
11.30
11.32
11.33
11.35
11.35 | 789
793
796
798
801
803
805
809 | 781
784
788
790
792
795
796
800 | 858
861
865
867
870
872
875
880 | 878
881
884
887
889
891
896 | 902
906
909
912
915
916 | 744
747
749
752
755
758
760
763 | 822
829
832
835
835
841
843
846
850
848 | 786
789
792
796
798
800
805 | 800
807
810
813
816
819
822
824
828
828 | | 1088
1119
1179
1240
1301
1361
1422
1483 | | 1162
1003
730
557
442
363
306
263 | 1168
991
701
525
412
336
282
242 | | 1136
1022
792
627
510
426
362
313 | 1107
1003
788
631
517
435
372
324 | 1152
986
720
554
442
363
307
265 | 977
705
538
426
349
294
253 | 1131
1001
764
601
487
406
345
298 | 1109
997
777
618
506
424
362
314 | 1083
981
773
620
510
429
367
318 | 755
653
556
477 | 749
649
554
475 | 799
673
566
482
415
363 | 811
681
573
487 | 821
683
572
487
421
368 | 745
705
604
511
437
378
331
293 | 376
328 | 780
729
614
515
439
378
330
293 | 801
745
620
518
440
380
331
294 | TABLE VIII.- MEASURED VALUES
OF LOAD, STRAIN, TEMPERATURE, AND DEFLECTION FOR 1,600 $^{\circ}$ F Test - Continued (d) Fourth heating cycle: 1 top skin thermocouple, 18 left longitudinal spar cap thermocouples, 73 transverse frame cap thermocouples - Continued | | | | | | | | | Tem | pera | ture | , °F | , at | - | | | | | | | | |--|--|--|--|--|--|---|--|--|--|---|---|---|---|--|--|--|--|--|--|--| | Time,
sec | TC
230 | TC
237 | TC
238 | TC
239 | TC
240 | TC
241 | TC
242 | TC
244 | TC
245 | TC
246 | IC
247 | TC
248 | TC
249 | TC
250 | TC
252 | TC
253 | TC
254 | TC
255 | 10
256 | TC
257 | | 0
30
60
90
121
151
176 | 79
79
81
88
105
141
185 | 79
81
103
149
231
377
546 | 79
87
123
195
317
521
714 | 78
94
140
222
354
565
746 | 79
89
117
164
243
374
501 | 79
88
124
192
306
497
671 | 79
84
117
186
308
505
677 | 79
82
105
164
279
486
702 | 79
79
83
92
119
186
274 | 78
79
82
91
118
181
258 | 79
80
82
88
102
136
178 | 79
79
79
80
83
92
104 | 79
79
81
88
106
144
187 | 79
79
81
87
102
133
169 | 79
80
83
96
130
216
321 | 79
81
102
151
242
410
602 | 79
83
106
151
231
376
523 | 79
82
112
184
317
547
773 | 80
80
82
91
114
174
254 | 79
81
87
103
141 | | 236
297
357 | 312
436
533 | 857
1000 | 1005
1105 | 996
1082 | 745
884
965 | 933
1030
1073 | 938
1038 | 1037
1162
1217 | 501
683 | 456
619 | 300
425
537 | 145
203 | 298
408
503 | | 592
801
925 | 629 | 796
922 | 1101 | 473
655 | | | 385
400
415
430
485
545
605
635
665
695 | 586
601
615
653
683
703
710
716 | 1086
1093
1099
1116
1130
1138
1140
1142 | 1186
1192
1194
1195 | 1135
1140
1145
1160
1173
1182
1186 | 1007
1020
1032
1069
1095
1113
1120
1125 | 1095
1100
1117
1128
1136
1140
1143 | 1096
1100
1104
1117
1126
1134
1137
1140 | 1243
1249
1263
1272
1279
1281
1283 | 853
867
879
911
935
950
955
960 | 790
805
819
868
888
906
913 | 641
697
742
775
788
799 | 327
345
363
426 | 670
697
708
717 | 497
513
527
573
613
639
652
661 | 976 | 1129
1135
1140
1157
1172
1183
1187
1189 | 1000
1008
1015
1022
1042
1058
1070
1075
1079
1082 | 1284
1289
1294
1308
1320
1329
1332
1335 | 816
833
848
861
899
928
948
955
961
966 | 608
627
644
697
740
769
780
792 | | 726
786
816
846
877
907
937
967
1028 | 732
735
738
740
742
745
747
751 | 1149
1150
1151
1152
1153
1154
1155
1161 | 1203
1206
1207
1209
1210
1212
1213 | 1203
1205
1208
1210 | 1137
1140
1143
1145
1148
1151
1153
1158 | 1151
1154
1154
1156 | 1149
1150
1151
1152
1154
1157
1158
1161 | 1296
1297
1300 | 972
974
976
978
980
982
983
988 | 935
937
940
943
945
947
949 | 831
836
841
846
852
856
862 | 645
655
673
679
685
691
701 | 743
747
750
752
755
758
764 | 686
693
697
700
705
708
708
716 | 1077
1082
1084
1087
1089
1091
1092
1094
1099 | 1201
1203
1204
1206
1208
1210
1211
1217 | 1086
1092
1096
1097
1099
1102
1105
1106
1114
1111 | 1344
1346
1348
1350
1353
1354
1360 | 972
980
984
987
990
993
995
998
1002 | 818
825
828
831
837
840
843
848 | | 1088
1119
1179
1240
1301
1361
1422
1483 | 735
697
598
506
433
375
328
291 | 1093
976
742
587
483
410
355
313 | 1146
1017
764
598
486
407
349
305 | 1132
1010
791
639
531
450
388
339 | 1102
1010
835
705
603
522
459
408 | 1097
986
769
618
510
431
371
324 | | 502 | 890
747
632
544
475
420 | 862
727
615
527
458 | 691
593
511
446
394 | 645
585
524
466
41 7 | 694
588
493
417
356
309 | 697
661
568
483
412
355
309
272 | 1059
984
822
694
598
521
460
410 | 1150
1032
796
640
536
461
404
359 | 1057
952
746
602
503
431
376
332 | 1279
1155
916
751
635
547
478
423 | 914
784
677
593
523 | 577
493
423
368 | TABLE VIII.- MEASURED VALUES OF LOAD, STRAIN, TEMPERATURE, AND DEFLECTION FOR 1,600° F TEST - Concluded (d) Fourth heating cycle: 1 top skin thermocouple, 18 left longitudinal spar cap thermocouples, 73 transverse frame cap thermocouples - Concluded | <u> </u> | | | | | Гепр | erat | ure, ' | F, a | t - | | | | | |--|--|--|--|--|--|--|--|--|--|--|--|--|--| | Time | | TC
259 | TC
260 | TC
261 | TC
262 | тс
263 | TC
264 | TC
265 | TC
266 | TC
267 | TC
268 | TC
269 | TC
270 | | 0
30
60
90
121
151
176
236
297
357 | 79
82
92
120
191
285
538
744 | 80
81
98
140
216
350
500
803
963
1037 | 79
86
108
148
218
335
459
717
873
961 | (a) | 79
79
82
90
113
164
226
401
568
697 | 79
79
82
89
106
144
191
332
474
596 | 79
79
82
91
116
176
251
463
656
794 | 79
82
102
152
250
414
595
904
1042
1107 | 78
79
96
129
188
292
415
677
819
1001 | 79
83
105
159
258
431
613
913
1051
1113 | 79
80
81
87
102
135
180
312
447
566 | 79
80
82
91
111
157
215
381
544
677 | 79
79
82
89
108
149
200
349
503
629 | | 385
400
415
430
485
545
605
665
695 | 948
962
1000
1027
1045
1051 | 1057
1066
1073
1080
1104
1121
1134
1137
1139
1142 | 1070
1084 | 1119
1147
1139
1120
1135
1151
1164
1173 | 742
763
783
800
852
892
920
930
939
946 | 664
684
704
764 | 838
858
876
893
940
976
1000
1009
1016 | 1128
1137
1146
1153
1179
1200
1215
1221
1226
1230 | 1053
1082 | 1131
1140
1148
1156
1181
1200
1215
1219
1223
1227 | 635
657
678
745
801
843
860
874 | 725
748
769
788
846
891
921
933
943 | 676
700
722
742
808
862
904
918
930
941 | | 726
786
816
846
877
907
937
967
1028
1058 | 1073
1076
1079
1081
1084
1086
1088
1092 | 1144
1150
1153
1154
1154
1157
1158
1159
1164
1162 | 1103
1106
1106
1106
1107 | 1177
1191
1193
1200
1203
1206
1216
1212
1227
1219 | 963
967
971
974
977
980
982
987 | 906
910
912
914 | 1039
1042
1045
1047
1049
1051 | 1238
1240
1242
1243
1244
1246
1248 | 1135
1136
1136
1136
1137
1138
1139 | 1229
1234
1235
1235
1236
1238
1239
1241
1247 | 915
922
927
931 |
956
965
968
971
973
976
985
985 | 951
965
970
975
979
981
985
987
993 | | 1088
1119
1179
1240
1301
1361
1422
1483 | 629
544
493 | 1118
1021
814
668
568
493
436
391 | 1069
975
777
638
539
463
405
358 | 1156
1058
880
739
623
527
447
382 | 918 | 901
860
753
654
571
502
444
397 | 1032
977
848
738
651
581
521
471 | 1205
111 ¹ 4
923
789
692
617
555
503 | 1097
994
785
644
546
473
412
359 | 1194
1086
870
726
623
547
488
439 | 936
903
813
729
658
597
543
495 | 966
919
805
704
623
557
500
452 | 978
940
842
753
677
614
559 | dIntermittent short in thermocouple. TABLE IX.- MEASURED VALUES OF LONGITUDINAL SPAR-CAP LOAD, STRAIN, AND TEMPERATURE FOR 1,000° F TEST 2 loads; 6 strain gages; 22 thermocouples. SG (strain gage) readings are corrected for temperature, microinches/inch; TC (thermocouple) readings are temperatures, OF | Time, | Total
load,
lb | Right
load,
lb | SG
95 | SG
99 | SG
101 | SG
103 | SG
105 | SG
107 | TC
95 | TC
99 | TC
101 | TC
103 | TC
105 | TC
107 | TC
184 | TC
185 | |--|--|--|---|--|--|---|--|--|--|--|--|--|--|--|--|--| | 0
66
126
196
257
317
453
483
511
542 | 0
-69
-95
-47
-81
-24
2659
3633
4634
5654 | 0
- 38
- 52
- 24
- 40
- 13
1314
1798
2290
2794 | -21
-15
-29
-47
-46
-21
295
399
506
613 | -21
6
107
217
264
295
426
468
510
553 | -18
-21
-31
-42
-41
-37
-128
-162
-195
-230 | -15
-18
-24
-35
-31
-33
-299
-397
-498
-600 | -18
-18
-38
-59
-65
-101
-213
-249
-286
-319 | -15
-6
11
30
50
55
-183
-273
-367
-464 | 84
89
128
192
244
292
378
394
409
423 | 86
88
107
151
196
240
328
345
359
374 | 85
86
93
108
123
137
169
176
182
188 | 83
85
92
104
116
128
155
161
166
171 | 83
85
97
119
139
158
199
207
215
222 | 83
85
93
106
120
135
169
176
183
190 | 80
87
127
192
245
293
380
397
411
425 | 81
90
138
203
254
301
388
405
419 | | 572
602
630
665
695
725
755
785
815
845 | 6656
7670
8709
9782
9809
9826
9835
9831
8468
6518 | 3290
3794
4306
4838
4854
4859
4866
4862
4275
3295 | 717
813
931
1046
1055
1062
1070
1086
961
775 | 596
639
686
729
736
742
746
750
704
640 | -265
-299
-333
-368
-365
-360
-356
-351
-291
-208 | -705
-810
-913
-1021
-1023
-1019
-1016
-1012
-873
-665 | - 356
- 389
- 421
- 453
- 456
- 452
- 456
- 452
- 408
- 351 | -559
-656
-756
-857
-861
-862
-864
-736
-554 | 436
448
458
469
479
488
496
503
509
515 | 388
399
410
422
431
440
448
455
462
468 | 194
200
204
209
214
218
222
227
230
233 | 176
181
184
188
193
196
200
204
206
209 | 230
236
242
248
254
259
264
269
273 | 197
203
208
215
220
225
230
235
239
243 | 439
450
461
473
482
490
498
505
511
518 | 447
459
469
481
491
500
508
515
521
528 | | 875
905
935
965
1084
1204
1325 | 4551
1591
90
142
155
128
236 | 2309
819
61
86
94
79
133 | 583
291
136
145
216
170
142 | 576
482
436
424
300
229 | -128
-3
62
67
89
95
85 | -452
-135
28
30
47
43
24 | -282
-180
-127
-125
-73
-32
-19 | -367
-87
55
47
11
-20
-49 | 521
526
530
535
485
415
357 | 473
478
482
486
457
394
337 | 236
240
242
244
234
207
184 | 212
215
217
218
210
189
171 | 281
284
287
291
271
230
204 | 246
250
254
256
250
225
200 | 523
528
533
537
487
420
362 | 533
539
543
547
488
420
362 | | Time, | Total
load,
lb | Right
load,
lb | TC
186 | TC
187 | TC
188 | 1°C
97 | TC
146 | TC
189 | TC
190 | TC
191 | TC
192 | TC
168 | TC
193 | TC
194 | TC
195 | TC
196 | | 0
66
126
196
257
317
453
483
511
542 | 0
-69
-95
-47
-81
-24
2659
3633
4634
5654 | 0
-38
-52
-24
-40
-13
1314
1798
2290
2794 | 84
92
136
202
254
300
385
401
415
429 | 84
90
131
196
248
295
380
397
410
424 | 83
86
113
169
219
266
355
372
387
402 | 84
86
108
159
207
253
342
359
374
388 | 84
86
106
152
198
243
332
349
363
378 | 83
87
112
157
201
244
328
344
358
371 | 80
85
112
159
204
249
337
353
367
381 | 80
83
108
162
212
260
352
370
385
400 | 84
86
98
115
130
145
178
185
191 | 84
85
92
106
120
134
166
172
178
184 | 83
84
90
102
114
126
155
161
166
172 | 83
84
92
106
117
128
153
158
162
167 | 85
84
90
101
113
125
155
161
166
172 | 84
85
95
109
123
137
170
178
184
191 | | 572
602
630
665
695
725
755
785
815
845 | 6656
7670
8709
9782
9809
9826
9835
9831
8468
6518 | 3290
3794
4306
4838
4854
4859
4866
4862
4275
3295 | 442
454
464
476
485
493
501
508
514
521 | 438
449
459
471
480
488
496
503
509
515 | 416
428
438
451
461
470
478
485
492
499 | 402
415
425
438
447
456
465
472
479
485 | 392
405
425
427
437
446
454
468
474 | 384
396
405
417
425
433
440
447
453
458 | 394
405
414
426
435
442
449
456
461
467 | 415
427
438
451
461
469
478
486
492
499 | 203
208
212
216
221
225
231
235
237
240 | 190
195
200
204
209
213
217
222
225
228 | 177
182
186
191
195
199
203
207
209
213 | 171
176
179
182
186
189
193
196
198
200 | 177
183
187
192
196
200
204
208
211
215 | 198
203
209
215
220
225
230
235
238
242 | | 875
905
935
965
1084
1204
1325 | 4551
1591
90
142
155
128
236 | 2309
819
61
86
94
79
133 | 526
531
535
539
484
413
356 | 521
526
530
534
482
413
355 | 504
510
514
519
483
417
359 | 491
496
501
505
476
411
353 | 480
485
490
494
467
403
346 | 463
467
471
475
436
374
320 | 471
476
479
483
436
368
313 | 505
510
515
519
484
418
360 | 244
247
249
250
233
204
182 | 231
234
237
239
231
205
183 | 216
219
221
223
218
196
176 | 203
206
207
209
198
179
162 | 218
221
223
225
221
199
179 | 246
249
253
255
245
220
197 | TABLE X.- SHEAR-WEB BEAM TESTS ## [Fabrication details are shown in fig. 15] | | T 1 | | | Doub | ler strip | Hole | cutout | Test t | emp., o _F | | Beam failure | Flange | Failure | |---------------------------------------|--|---|--|--------|-------------------|------------------------------|--------------------------|--|--|---|--
---------------------------------|--| | Specimen | Length,
in. | d,
in. | t,
in. | Depth, | Thickness,
in. | Diameter,
in. | Stiffener | Тор | Bottom | Load,
lb | Mode | load,
lb | shear
stress,
ksi | |
 | | | ı | | l= | 60° × 1- | inch flat c | orrugat | ion | ' | | | | | | | | | | | | , ===. | | | . | | | | | 1
2
3
4
5
6
7
8 | 35.40
35.40
35.45
35.44
35.44
35.39
35.41
35.47 | 18.00
17.98
17.98
17.99
17.98
17.95
17.98 | 0.0182
.0184
.0183
.0178
.0180
.0184
.0181 | 1.62 | 0.018
.010 | 8.25
8.25
8.25
8.25 | Fig. 15(a)
Fig. 15(a) | 80
1232
1202
80
80
80
1195 | 80
1220
926
80
80
80
916 | 11,750
7,000
8,000
15,500
16,075
7,500
8,790
6,475 | Element buckling
Element buckling
Cutout buckling
Cutout buckling | 195
231
400
288 | 35.3
20.8
23.9
47.8
48.9
21.5
26.3
19.3 | | | | | | | Spe | ectar cran | sverse iram | corru | Bacton | | | | | | 9
10
11
12
13
14
15 | 34.62
34.65
34.70
34.58
34.74
34.78
34.75 | 17.20
17.25
17.25
17.25
17.24
17.26 | 0.0104
.0103
.0101
.0105
.0103
.0103 | 0.75 | 0.010 | 8.25
8.25
8.25
8.25 | Fig. 15(b) | 80
1194
1186
80
80
80
1205 | 80
1194
904
80
80
80
913 | 1,250
1,350
2,800
2,000
2,100 | General instability Web-cap connection *Web-cap connection General instability General instability General instability General instability | 330
310
423
517
545 | 11.4
5.2
6.0
13.1
8.4
8.8
5.2 | ^{*}Failed on hotter edge. ## TABLE XI.- SKIN-PANEL HEAT AND LOAD TESTS (a) Specimen 1; room-temperature loading; instrumentation location, figures 25(a) and 25(b) | Time, | Normal
load,
psf | Defl
1 | Defl
2 | Defl
3 | Defl
4 | SG
1 | SG
2 | sg
3 | SG
4 | SG
5 | sc
6 | SG
7 | SG
8 | SG
9 | SG
10 | SG
11 | SG
12 | |-------|------------------------|-----------|-----------|-----------|-----------|---------|---------|---------|---------|---------|--------------|---------|---------|---------|----------|----------|----------| | 0 | 0 | 0 | 0 | 0 | 0 | 0 | o | 0 | o | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 21 | 131 | .125 | .133 | .086 | . 084 | 798 | -344 | 799 | -342 | 828 | | 546 | -211 | 210 | -284 | 735 | -199 | | 53 | 292 | .276 | .287 | .187 | .185 | | -763 | 1782 | -748 | 1872 | - 818 | 1217 | -501 | 548 | -693 | | -513 | | 105 | 438 | 414 | .426 | .277 | .277 | 2647 | -1137 | 2658 | -1124 | | -1226 | 1821 | -759 | 852 | -1060 | | | | 232 | 553 | .521 | .532 | • 346 | .346 | | | | -1435 | | | | -968 | | | | | | 252 | 644 | .615 | .625 | | .407 | | -1697 | | | | | 2605 | | | | | -1146 | | 263 | 685 | .674 | .684 | .441 | 444 | | | 4540 | | 4851 | -2004 | | | 1390 | -1718 | 4011 | -1220 | | 295 | 723 | •739 | .748 | •479 | | | -2007 | (**) | -1985 | | -2166 | | | | | | -1284 | | 305 | 772 | .833 | | •533 | .538 | | -2231 | | -2193 | | -2393 | | -1345 | 1587 | -1984 | | | | 316 | 806 | .921 | .929 | .582 | .584 | | -2426 | | -2370 | | -2588 | | -1392 | | -2098 | | -1407 | | 358 | 856 | 1.069 | 1.077 | (*) | (*) | | -2735 | | -2654 | | -2914 | 3341 | -1453 | | | | -1454 | | 389 | 906 | / 1 | 1.264 | | | | -3108 | | -2984 | | -3275 | | | 1869 | | | -1480 | | 513 | 989 | 1.750 | 1.750 | | | | -3876 | | -3591 | | -3962 | 3635 | -1564 | 1992 | -2614 | | -1511 | (b) Specimen 2; 1,600° F uniform heating; instrumentation location, figures 25(a) and 25(c) | Time, | Normal
load,
psf | Defl
l | Defl
2 | Defl
3 | Defl
4 | TC
1 | TC 2 | TC
3 | TC
4 | TC
5 | TC
6 | TC
7 | TC
9 | TC
10 | TC
11 | TC
13 | TC
14 | TC
15 | TC
16 | TC
17 | TC
18 | TC
19 | |-------|------------------------|-----------|-----------|-----------|-----------|---------|------|---------|---------|----------|---------|---------|---------|--------------|----------|----------|----------|----------|----------|----------|----------|----------| | 0 | 0 | 0 | 0 | 0 | 0 | 80 | 80 | 80 | 80 | 80
98 | 80 | 80 | 80 | 80 | 80 | 80 | 80
84 | 80 | | 80 | 80 | | | 9 | 0 | 027 | 017 | 012 | 012 | 80 | 96 | 80 | 98 | 98 | 89 | 86 | 80 | 1.00 | 91 | 80 | | 85 | 84 | 84 | 84 | 83 | | 24 | 0 | 235 | 226 | 155 | 169 | 102 | | 103 | 279 | 254 | 277 | 275 | 80 | 280 | 281 | 101 | 204 | 260 | 270 | 268 | 245 | | | 39 | 0 | 342 | - · 334 | 229 | 251 | 178 | | 189 | 441 | 424 | 443 | 443 | | 440 | 447 | 174 | 382 | 418 | 438 | 437 | 398 | | | 54 | 0 | 385 | 377 | 259 | 284 | 295 | | 325 | 596 | 590 | 602 | 606 | 298 | 590 | 609 | 286 | 511 | 566 | 596 | 597 | 546 | | | 84 | 0 | - • 363 | 341 | 238 | 259 | 534 | 792 | 590 | | 796 | 817 | 819 | 558 | 800 | 803 | 512 | 692 | | 809 | 814 | 754 | | | 146 | 0 | 385 | 369 | 266 | - 277 | | 1162 | | | 1170 | | 1155 | | 1168 | | | | | 1162 | | | | | 206 | 0 | 505 | 483 | 348 | 364 | | | | | | | 1438 | | | | | | | 1452 | | | | | 267 | 0 | 606 | 572 | 412 | 431 | | | | | | | 1583 | | | | | | | 1588 | | | | | 297 | ١٠ | 606 | 581 | 419 | 438 | 1,500 | TOOD | 1202 | T000 | 1603 | 1604 | 1290 | 17227 | 1590 | T05T | 1591 | 1422 | 1540 | 1590 | エンソン | 1524 | 1433 | | 358 | ٥ | 607 | 605 | 439 | 456 | 1312 | 1606 | 1366 | 1603 | 1603 | 1608 | 1595 | 1366 | 1598 | 1633 | 1299 | 1461 | 1552 | 1601 | 1599 | 1531 | 1430 | | 368 | 18 | 578 | 581 | 424 | 441 | 1309 | 1606 | 1366 | 1603 | 1603 | 1608 | 1594 | 1367 | 1598 | 1637 | 1300 | 1464 | 1553 | 1600 | 1600 | 1531 | 1439 | | 378 | 55 | 552 | 553 | 403 | 424 | 1292 | 1606 | 1341 | 1602 | 1603 | 1599 | 1584 | 1345 | 1598 | 1639 | 1293 | 1465 | 1551 | 1587 | 1587 | 1526 | 1436 | | 388 | 80 | 515 | 528 | 386 | 409 | 1284 | 1606 | 1339 | 1604 | 1603 | 1604 | 1587 | 1337 | 1598 | 1626 | 1287 | 1472 | 1550 | 1589 | 1591 | 1526 | 1445 | | 398 | 101 | 476 | 477 | 353 | 376 | 1281 | 1606 | 1335 | 1602 | 1603 | 1602 | 1585 | 1338 | 1598 | 1623 | 1292 | 1468 | 1544 | 1580 | 1580 | 1516 | 1440 | | 408 | 154 | 367 | 380 | 286 | 313 | | | | | | | | | | | | | | | | | | | 418 | 217 | 178 | 198 | 167 | 193 | | | | | | | | | | | | | | | | | | | 428 | 256 | 077 | 094 | 102 | 125 | 1269 | 1609 | 1325 | 1603 | 1603 | 1603 | 1590 | 1336 | 1598 | 1626 | 1290 | 1491 | 1562 | 1594 | 1596 | 1544 | 1457 | | 438 | 305 | .074 | .055 | 012 | 026 | 1270 | 1608 | 1330 | 1601 | 1603 | 1601 | 1592 | 1339 | 1598 | 1620 | 1292 | 1506 | 1576 | 1602 | 1602 | 1555 | 1469 | | 443 | 313 | .121 | .107 | .020 | .008 | 1263 | 1608 | 1322 | 1593 | 1603 | 1598 | 1588 | 1337 | 1598 | 1624 | 1291 | 1508 | 1577 | 1604 | 1603 | 1556 | 1471 | | 448 | 332 | .198 | .190 | .070 | 065 | 1262 | 1608 | 1320 | 1508 | 1602 | 1506 | 1580 | 1 22). | 1508 | 1608 | 1207 | 1501 | 1560 | 1507 | 1506 | 1=1.6 | 173,63 | | 453 | 313 | 1.025 | .446 | .221 | 226 | 1250 | 1608 | エノニソ | 1505 | 1602 | 1585 | 1580 | 1227 | 1598
1598 | 1635 | 1280 | 1505 | 1560 | 150 | 1500 | 1510 | 1404 | | 477 | رير | 1.02) | •+40 | .221 | .220 | 12/5 | 1000 | -/// | 1797 | 1005 | | 1,02 | 1.777 | 1,790 | 1027 | 1209 | ן כטכב | 1,709 | 1)94 | 1,794 | 1540 | 1401 | ^{*}Deflection exceeded capability of deflectometer. ^{**}Signal went off scale on recorder. ## TABLE XI.- SKIN-PANEL HEAT AND LOAD TESTS - Continued (c) Specimen 3; $1,600^{\circ}$ to $1,300^{\circ}$ F gradient heating; instrumentation location, figures 25(a) and 25(c) | Time, | Normal
load,
psf | Defl
1 | Defl
2 | Defl
3 | Defl
4 | TC
1 | TC
2 | TC
3 | TC
4 | TC
5 | TC
6 | TC
8 | TC
9 | TC
10 | TC
11 | TC
12 | TC
13 | TC
14 | TC
15 | TC
16 | TC
17 | TC
18 | TC
19 | |--|--|---|--|--|--|--|--|---|--|--|--|--|--|--|--|--|---|--|--|--|--|--|--| | 0
124
244
364
515
756
996
1122
1127 | 0
0
0
0
0
0
0
0
27
124 | 0
065
119
176
221
391
570
568
521 | 0
056
106
155
206
327
472
462
419
288 | 0
046
085
126
166
282
(***)
(***) | 253
(***)
(***) | 242
379
549
828
1110
1119 | 1339
1339
1337 | 129
275
429
613
894
1170
1174
1173 | 1393
1395
1392 | 188
380
570
792
1132
1450
1450 | 191
395
593
820
1184
1496
1497
1494 | 1612
1613
1610 | 1393
1392 | 1601
1601
1600 | 1430
1424
1422 | 174
376
569
748
1053
1337
1307 | 124
272
422
577
831
1084
1079 | 1578
1581
1581 | 1590
1590 | 1633
1636
1635 |
1627
1629
1629 | 1559
1557 | 1542
1544 | | 1163
1171
1179
1187
1195
1203
1210
1212 | 230
286
335
388
444
511
554
141 | 174
041
.122
.239
.407
.653
.906
1.162 | 116
022
.109
.196
.339
.549
.756 | 152
064
.036
.104
.199
.328
.489 | 138
063
.028
.090
.184
.321 | 1076
1061
1062
1062
1062
1057
1056 | 1331
1332
1337
1337
1337
1338
1338 | 1133 | 1383
1380
1386
1392
1392
1391
1394 | 1447
1447
1446
1448
1448
1448 | 1488
1483
1490
1496
1495
1494
1495 | 1594
1592
1588
1587
1581
1579
1575 | 1350
1346
1332
1337
1335
1330
1321 | 1592
1589
1585
1584
1580
15 7 5
15 7 0 | 1415
1422
1430
1430
1432
1433
1435 | 1293
1295
1301
1304
1306
1308
1306 | 1034
1025
1021
1014
1024
1024 | 1588
1591
1603
1610
1607
1607
1615 | 1581
1579
1586
1596
1590
1583
1586 | 1610
1604
1607
1623
1611
1600
1599 | 1609
1607
1605
1609
1608
1598 | 1549
1547
1556
1560
1553
1560
1562 | 1545
1554
1563
1579
1582
1596
1612 | (d) Specimen 4; 600° to 300° F gradient heating; instrumentation location, figures 25(a) and 25(c) | Time, | Normal
load,
psf | Defl
l | Defl
2 | Defl
3 | Defl
4 | TC
1 | TC
3 | TC
4 | TC
6 | TC
9 | TC
10 | TC
11 | TC
12 | TC
13 | TC
14 | TC
15 | TC
16 | TC 17 | TC
18 | TC
19 | |--|--|--|--|--|----------------------|---------------------------------|--|---|--|--|--|--|--|--|--|--|--|--|--|--| | 0
12
21
30
39
51
60
91
304
406 | 0
0
0
0
0
0
0
0 | 0
080
139
187
225
266
230
127
090 | 0
108
185
251
295
332
271
162
119
013 | 0
076
131
177
213
249
193
116
088
022 | 120 | 106
132
157
215
266 | 159
192
270
326 | 179
231
286
360
388
394
406 | 137
197
260
326
416
446
462
471 | 91
101
125
164
235
294
398
448 | 237
318
401
514
535
547
549 | 259
324
412
442
450
448 | 163
208
255
320
340
333
346 | 164
228 | 477
490
495
524 | 241
325
410
524
537
542
544 | 507
532
551 | 229
311
393
505
543
549 | 229
313
395
505
523
527
537 | 214
284
353
446
458
463
497 | | 450
509
539
568
627
728
743
755
764
785 | 278
431
497
571
674
746
790
817
845
893 | .138
.284
.351
.438
.604
.840
1.016
1.153
1.300
(*) | .098
.261
.335
.436
.627
.867
1.046
1.180
1.322
(*) | .051
.159
.208
.270
.378
.508
.599
(*)
(*) | .290
.406
.552 | 195
204
207 | 269
269
270
256
264
259
263
266 | 409
407
404
408
409
413
419 | 473
471
469
465
463
465
469
474 | 353
336
329
324
335
332
333
337 | 537
534
532
540
539
545
548
549 | 448
430
423
432
448
458
463
467 | 343
339
338
327
328
338
346
353 | 215
216
212
203
218
217
215
215 | 560
566
568
590
610
630 | 517
527
528
548
556
576
595
597 | 517
525
529
546
543
557
563
567 | 545
538
545
542
556
557 | 543
546
543
562
556
569
579
581 | 484
506
511
535
560
577
584
588 | ^{*}Deflection exceeded capability of deflectometer. ***Peflection exceeded negative capability of deflectometer. (e) Specimen 5; 10° F/sec rise rate; temperature distribution in corrugation element cross section; instrumentation location, figure 26(c) | Time, | TC |--|--|--|---|---|---|---|---| | | 20 | 21 | 22 | 23 | 24 | 25 | 26 | | 0
8
28
48
69
89
109
129
144
148
150
160
168
188
217
247 | 76
223
495
706
891
1091
1283
1483
1614
1642
1646
1646
1649
1660
1665
1671 | 76
221
482
694
882
1085
1281
1482
1613
1642
1647
1650
1662
1666
1673 | 76
153
360
567
764
967
1157
1352
1516
1524
1531
1538
1538
1541 | 76
157
371
583
782
987
1379
1514
1546
1553
1555
1554
1560
1559
1563 | 76
84
206
380
572
770
962
1146
1313
1329
1362
1368
1377
1379
1380 | 76
76
124
249
425
625
829
1029
1164
1203
1222
1278
1292
1300
1301
1299 | 76
77
116
236
410
611
817
1018
1152
1192
1210
1268
1282
1291
1292
1291 | (g) Specimen 7; room-temperature loading after surface was buckled as described in table XI(f) above; instrumentation location, figure 25(a) | Time, | Normal
load,
psf | Defl
l | Defl
2 | Defl
3 | Defl
4 | |--|--|---|---|---|---| | 0
30
48
69
84
103
130
153
162
168 | 0
111
198
294
370
436
506
630
689
720 | 0.026
.146
.241
.344
.425
.497
.581
.738
.858 | 0.005
.108
.190
.280
.351
.415
.487
.625
.726 | 0.005
.074
.129
.189
.236
.278
.326
.416
.475 | 0.005
.073
.126
.186
.233
.275
.322
.412
.473
.512 | | 178
184
196
202
211 | 772
810
868
900
929 | 1.077
1.195
1.408
1.524
1.661 | .917
1.027
1.238
1.356
1.493 | .584
.644
.757
(*) | .589
(*)
(*)
(*)
(*) | $\ensuremath{^{\star}}\xspace Deflection$ exceeded capability of deflectometer. (f) Elevated-temperature buckling of skin-panel surfaces heated cyclically to a maximum of 1,200° F in the seam-welded flat element in the sequence indicated | Specimen | Normal
load,
psf | Temperature
rise rate,
^O F/sec | Number of
residual
buckles | |----------|------------------------|---|--| | 6 | 0 | 0
10
20
30
40
50
60 | 10
10
10
10
26
35
80
86 | | 7 | 288 | 0
10
15
20
25
30
35
40 | 5
8
13
28
52
89
123
166 | (h) Room-temperature compression buckling; single element of corrugated skin panel, 6.1 in. long x 1.8 in. wide with 0.0197-in.-thick corrugation welded to 0.0107-in.-thick beaded sheet | Specimen | Buckling
stress,
psi | |----------|----------------------------| | 8 | 63,500 | | 9 | 64,200 | TABLE XII.- SKIN-PANEL ACOUSTIC TESTS | Specimen | Corrugation
orientation
relative
to airflow | Sound
pressure
level,
db | Temperature,
OF | Accumulated
exposure
time,
min | Remarks | |-------------------|--|-----------------------------------|--------------------|---|---| | 1.0 | Perpendicular | 160 | Room | 5 | No damage noted | | 10 | respendieusas | 200 | temperature | 16 | 1 | | | | | | 51 | 3 skin cracks along one end | | | | | | 61 | 1 | | | | | | 81 | | | | | | | 91 | . ↓ | | | | | | 121 | Crack growth across one end |
 11 | Parallel | 160 | Room | 10 | No damage noted | | | | | temperature | 20 | Weld failures, Z-stiffener to
panel corrugation crests | | | | | | 30 | 1 | | | Į | | ļ | 40 | Skin crack, 1 inch long | | | | | | 50 | | | | i | | | 60 | . ↓ | | | | | | 70 | Crack growth | | 12 | Perpendicular | 160 | Room | 20 | Weld failures, transverse span | | _ | | | temperature | 70 | cap to shear web | | Z-stiffener welds | | | | 30
40 | | | replaced by | | | | 50 | | | rivets | | | | 70 | Skin crack | | | ì ' | | } | 90 | Diam Crack | | | | | | 120 | Crack growth, additional weld | | | | | | 122 | failures | | 13 | Perpendicular | 151 | 1,600 | 5 | Rivet failures, panel to spar | | | | | 1 | [| caps new rivets installed | | Z-stiffener welds | 1 | | 1,200 | 15 | No damage noted | | replaced by | | | | 30 | Weld failure, transverse spar
cap to shear web | | 11,000 | | | | 50 | | | | } | | 1 | 70 | | | | | | 1 | 100 | · · | | | | | | 120 | Small crack in expansion | | | 1 | | | 150 | l | | | | | | 180 | No change in crack, additional weld failures | TABLE XIII.- SKIN-PANEL FLUTTER TESTS Tested at Mach 1.87 in the Langley Unitary Plan wind tunnel | Specimen | Corrugation orientation relative to airflow | Temperature,
OF | Dynamic
pressure,
psf | Remarks | |----------|---|--------------------|-----------------------------|------------| | 14 | Perpendicular Parallel Parallel | 125 | 2,050 | Flutter | | 15 | | 125 | 2,400 | No flutter | | 15 | | 600 | 2,400 | No flutter | Figure 1.- Structural concept model of lifting reentry glider. L-59-4916 Figure 2.- Interior structure of structural concept model for lifting reentry glider. Dimensions are in inches. L-60-571 (b) Spar-web details. Figure 2.- Continued. (c) Spar-cap details. Figure 2.- Concluded. (a) Perspective, looking aft from nose. L-62-6797 Figure 3.- Exterior of structural concept model. (b) Overall drawing. Figure 3.- Continued. L-62-5981 (c) Skin-panel details. Figure 3.- Continued. (d) Assembled model in supporting frame prior to heat treatment. L-59-3871 Figure 3.- Concluded. (a) Loading. Figure 4.- Model test setup. (b) Heating and loading. Figure 4.- Concluded. L-59-6745.1 74. (a) Strain gages, plan view. Figure 5.- Instrumentation location. Various rosette gage elements with the same number are wired together to form a complete or partial bridge. (b) Strain gages, elevation views. Figure 5 .- Continued. (c) Thermocouples, longitudinal spars. Figure 5.- Continued. (d) Thermocouples, transverse spars. Figure 5.- Continued. Sta. 144 (d) Concluded. Figure 5.- Continued. (e) Thermocouples, top skin. Figure 5.- Continued. (f) Thermocouples, bottom skin (unfolded). Figure 5.- Continued. (g) Deflectometers. Figure 5.- Concluded. (a) Comparison between measured and calculated deflections. Figure 6.- Model deflections for room-temperature distributed load. (b) Contributions of various factors to calculate model deflection for 9,986-pound distributed load. Figure 6.- Concluded. (a) Shear strain in corrugated web of main beam at station 188 for 1,000-pound concentrated load applied at various stations. Figure 7.- Strain in model due to loading at room temperature. (b) Main beam spar-cap strain in cross section at station 155. Figure 7.- Continued. (c) Strains in longitudinal spar cap for distributed load. Figure 7.- Concluded. Figure 8.- Comparison of experimental and calculated angles of twist for 16,650 in-1b torque applied at station 96, at room temperature. Figure 9.- Programed test environment. (a) Top skin temperature, ${}^{\circ}F$, are listed at each thermocouple location. Figure 10.- Temperature distribution of structure at 7 minutes. (b) Bottom skin temperature, ${}^{\mathrm{O}}\mathrm{F},$ are listed at each thermocouple location. Figure 10.- Continued. (c) Skin temperatures, ${\rm ^{O}F},$ in transverse section at station 157. Figure 10.- Continued. (d) Temperatures, ${}^{\circ}F$, in transverse frame at station 144. Figure 10.- Continued. (e) Temperature in right longitudinal spar caps. Figure 10.- Concluded. Figure 11.- Variation of temperature with time in model cross section at station 157. Figure 12.- Tip deflection of model for 1,600 $^{\rm O}$ F test. (b) Horizontal. Figure 12.- Concluded. -33 Figure 13.- Temperature distribution in longitudinal spar cap at station 157. Figure $1^{l_{+}}$. Strains in longitudinal spar-cap cross section due to thermal and load stress for $1,000^{\circ}$ F test (table IX). (a) 60° by 1-inch flat corrugation. Figure 15.- Shear-web test specimen. 150 (b) Special transverse-frame corrugation. Figure 15.- Concluded. (a) Room temperature. Figure 16.- Shear-web test setup. (b) Elevated-temperature setup with one side-radiator and hydraulic loading system removed. L-60-2749 Figure 16.- Concluded. Figure 17.- Shear-web temperature distributions for combined heat and load tests. (a) 60° by 1-inch flat corrugation. Figure 18.- Tip deflection for corrugated shear-web beams. See table X for description of specimens and test conditions. (b) Special transverse-frame corrugation design from structural concept model. Figure 18.- Concluded. Figure 19.- Influence of elevated temperature and connection doubler strips on failure strength of corrugated shear webs. (b) Transverse-frame corrugation. Figure 19.- Concluded. (a) Element buckling, 60° corrugation specimen 5. L-61-1819 Figure 20.- Modes of shear-web failure. (b) General instability, transverse-frame corrugation specimen 9. I-60-2106 Figure 20.- Concluded. Figure 21.- Shear-strain distribution in web with cutout, specimen 6. Numbers are strains in microinches per inch. Numbers in parentheses are from specimen 1 (no cutout). Calculated average $\gamma = 504$. Figure 22.- Factors affecting room-temperature strength-unit weight ratio for corrugated web beams. Figure 23.- Skin-panel test specimens. (a) Room temperature. L-60-5765.1 Figure 24.- Skin-panel heat and load test setup. (b) Elevated-temperature test setup with deflectometer assembly removed. L-60-2654.1 Figure 25.- Skin-panel instrumentation location. (b) Strain gages. Figure 25.- Continued. (c) Thermocouples. Figure 25.- Concluded. Figure 26.- Temperature distribution for corrugation-stiffened skin panels. (b) Panel element, steady state. Figure 26.- Continued. (c) Panel element, transient. Figure 26.- Continued. Figure 28.- Normal load, center deflection for corrugation-stiffened skin panels. (b) Comparison of experimental with calculated skin-panel deflections. Figure 28.- Concluded. Figure 29.- Acoustic test setup. L-60-579.1 Figure 30.- Growth of skin cracks at end of 121 minutes of exposure to 160-db sound-pressure level at room temperature, specimen 10. Figure 31.- Failure of indirect resistance welds on back side of skin-panel specimen 10 at I-60-577.1 end of test. Figure 32.- Growth of skin cracks at end of 120 minutes of exposure at 160-db sound-pressure level at room temperature, modified specimen 12. $P^{\prime}:$ (a) Apparent strain for gage type rated at $<600^{\circ}$ F on Inconel X. Gage was cyclicly heated and cooled four times to temperatures of 620° , 720° , and 800° F. Figure 33.- Strain-gage temperature effects. Gage installation was cured at 600° F for 1 hour prior to testing. (b) Apparent strain for gage type rated at $>600^\circ$ F on Inconel X. Gage was cyclicly heated and cooled four times to temperatures of 780° , 860° , $1,030^\circ$, and $1,140^\circ$ F. Figure 33.- Continued. (c) Gage factor for foil gages. Figure 33.- Concluded. Figure 34.- Division of main beams into seven elements of length for deflection calculations. Figure 35.- Correction terms to be applied to measured temperature to get average temperatures in each element of length for main-beam spar caps. (a) Bending deformation in one repeating element. (b) Bending of element (1). (c) Bending of element (2) or (3). Figure 36.- Deformation of special transverse-frame corrugation considered in shear-web deflection calculation. (a) Beam-loading diagram. (b) Beam-bending-moment diagram. (c) Beam-curvature diagram. (d) Moment-curvature relationship for cross section of beam. Figure 37.- Graphical construction used in the calculation of plastic beam bending. Figure 38.- Effective stress-strain curves for postbuckled parts of the corrugation-stiffened skin panel.